ETHzürich

Energy-Optimal Signaling using the Example of Optical Communication

Stefan M. Moser

26 January 2023

Information Theory and Tapas Workshop - Universidad Carlos III de Madrid

Joint Work with

Longguang Li

East China
Normal University China

Ligong Wang

ETIS Laboratory
Cergy-Pontoise
France

Michèle Wigger

Télécom Paris France

Model for Optical Communication

Model for Optical Communication

Optical MIMO Channel (1/3)

$$
\begin{aligned}
Y_{1} & =h_{1,1} x_{1}+h_{1,2} x_{2}+\cdots+h_{1, n_{\mathrm{T}}} x_{n_{\mathrm{T}}}+Z_{1} \\
Y_{2} & =h_{2,1} x_{1}+h_{2,2} x_{2}+\cdots+h_{2, n_{\mathrm{T}}} x_{n_{\mathrm{T}}}+Z_{2} \\
& \vdots \\
Y_{n_{\mathrm{R}}} & =h_{n_{\mathrm{R}}, 1} x_{1}+h_{n_{\mathrm{R}}, 2} x_{2}+\cdots+h_{n_{\mathrm{R}}, n_{\mathrm{T}}} x_{n_{\mathrm{T}}}+Z_{n_{\mathrm{R}}}
\end{aligned}
$$

where

- $x_{1}, \ldots, x_{n_{\top}}$ describe LEDs (light intensity \Longrightarrow nonnegative)
- $Y_{1}, \ldots, Y_{n_{\mathrm{R}}}$ describe photo detectors (electrical signal)
- $h_{i, j}$ describe constant channel coefficients (nonnegative)
- $Z_{1}, \ldots, Z_{n_{\mathrm{R}}}$ is additive, signal-independent Gaussian noise (due to thermal noise and ambient light; shot noise or relative intensity noise is neglected)

Optical MIMO Channel (2/3)

In vector-notation:

$$
\mathbf{Y}=\mathrm{Hx}+\mathbf{Z}
$$

- $n_{\mathrm{R}} \times n_{\mathrm{T}}$ matrix H with nonnegative entries
- n_{T}-vector x with nonnegative entries (intensities!)

Optical MIMO Channel (2/3)

In vector-notation:

$$
\mathbf{Y}=\mathrm{Hx}+\mathbf{Z}
$$

- $n_{\mathrm{R}} \times n_{\mathrm{T}}$ matrix H with nonnegative entries
- n_{T}-vector x with nonnegative entries (intensities!)
- power constraints:
- limited total average power E :

$$
\sum_{i=1}^{n_{\mathrm{T}}} \mathrm{E}\left[X_{i}\right] \leq \mathrm{E}
$$

- limited per-antenna peak power $\mathcal{A}: \operatorname{Pr}\left[X_{i}>A\right]=0$ $\left(i=1, \ldots, n_{\mathrm{T}}\right)$

Optical MIMO Channel (2/3)

In vector-notation:

$$
\mathbf{Y}=\mathrm{Hx}+\mathbf{Z}
$$

- $n_{\mathrm{R}} \times n_{\mathrm{T}}$ matrix H with nonnegative entries
- n_{T}-vector x with nonnegative entries (intensities!)
- power constraints:
- limited total average power E :

$$
\sum_{i=1}^{n_{\mathrm{T}}} \mathrm{E}\left[X_{i}\right] \leq \mathrm{E}
$$

- limited per-antenna peak power $\mathrm{A}: \operatorname{Pr}\left[X_{i}>A\right]=0$ $\left(i=1, \ldots, n_{\mathrm{T}}\right)$
\Longrightarrow constraint on first moment, not on second moment!

Optical MIMO Channel (3/3)

We define average-to-peak power ratio

$$
\alpha \triangleq \frac{E}{A}
$$

Optical MIMO Channel (3/3)

We define average-to-peak power ratio

$$
\alpha \triangleq \frac{E}{A}
$$

- α is a channel parameter: $0<\alpha \leq n_{T}$
- we play with A and have $\mathrm{E}=\alpha \mathrm{A}$

Optical MIMO Channel (3/3)

We define average-to-peak power ratio

$$
\alpha \triangleq \frac{E}{A}
$$

- α is a channel parameter: $0<\alpha \leq n_{T}$
- we play with A and have $\mathrm{E}=\alpha \mathrm{A}$

3 cases:

- If " $\alpha=0$ ": only average-power constraint

Optical MIMO Channel (3/3)

We define average-to-peak power ratio

$$
\alpha \triangleq \frac{E}{A}
$$

- α is a channel parameter: $0<\alpha \leq n_{\text {T }}$
- we play with A and have $\mathrm{E}=\alpha \mathrm{A}$

3 cases:

- If " $\alpha=0$ ": only average-power constraint
- If $\alpha=n_{\mathrm{T}}$: only peak-power constraint

Optical MIMO Channel (3/3)

We define average-to-peak power ratio

$$
\alpha \triangleq \frac{E}{A}
$$

- α is a channel parameter: $0<\alpha \leq n_{\text {T }}$
- we play with A and have $E=\alpha A$

3 cases:

- If " $\alpha=0$ ": only average-power constraint
- If $\frac{n_{\mathrm{T}}}{2} \leq \alpha \leq n_{\mathrm{T}}$: average-power constraint inactive \Longrightarrow only peak-power constraint

Optical MIMO Channel (3/3)

We define average-to-peak power ratio

$$
\alpha \triangleq \frac{E}{A}
$$

- α is a channel parameter: $0<\alpha \leq n_{\mathrm{T}}$
- we play with A and have $E=\alpha A$

3 cases:

- If " $\alpha=0$ ": only average-power constraint
- If $\frac{n_{\mathrm{T}}}{2} \leq \alpha \leq n_{\mathrm{\top}}$: average-power constraint inactive \Longrightarrow only peak-power constraint
- If $0<\alpha<\frac{n_{T}}{2}$: both peak- and average-power constraint

Channel Capacity

- is the maximum rate at which information can be transmitted over the channel reliably
- can be computed as

$$
\max _{P_{\mathbf{X}}} \mathrm{I}(\mathbf{X} ; \mathbf{Y})
$$

where $P_{\mathbf{X}}$ must satisfy power constraints

Channel Capacity

- is the maximum rate at which information can be transmitted over the channel reliably
- can be computed as

$$
\max _{P_{\mathbf{X}}} \mathrm{I}(\mathbf{X} ; \mathbf{Y})
$$

where $P_{\mathbf{X}}$ must satisfy power constraints

- is a function of the available average and peak power:

$$
C(A, E)=C(A, \alpha A)
$$

Channel Capacity

- is the maximum rate at which information can be transmitted over the channel reliably
- can be computed as

$$
\max _{P_{\mathbf{X}}} \mathrm{I}(\mathbf{X} ; \mathbf{Y})
$$

where $P_{\mathbf{X}}$ must satisfy power constraints

- is a function of the available average and peak power:

$$
C(A, E)=C(A, \alpha A)
$$

- exact capacity expression is not known
- in SISO case tight bounds are known
- in SISO asymptotic $(A \rightarrow \infty$ and $A \rightarrow 0)$ behavior of capacity is known

Full-Rank MIMO Channel: $n_{\mathrm{T}} \leq n_{\mathrm{R}}(\mathbf{1 / 2)}$

We have more receiver antennas than transmitter antennas:

Full-Rank MIMO Channel: $n_{\mathrm{T}} \leq n_{\mathrm{R}}(\mathbf{1 / 2)}$

We have more receiver antennas than transmitter antennas:

\Longrightarrow orthogonalize channel matrix H (SVD)

Full-Rank MIMO Channel: $n_{\mathrm{T}} \leq n_{\mathrm{R}}(\mathbf{2} / \mathbf{2})$

We obtain equivalent channel with identical capacity:

Full-Rank MIMO Channel: $n_{\mathrm{T}} \leq n_{\mathrm{R}}(\mathbf{2} / 2)$

We obtain equivalent channel with identical capacity:

- we ignore redundant photo detectors
- we obtain n_{T} parallel channels without interference

Rank-Deficient MIMO Channel: $n_{\mathrm{T}}>n_{\mathrm{R}}$

We have more transmitters than receivers:

\Longrightarrow orthogonalization not possible: it is not optimal to ignore inputs

Rank-Deficient MIMO Channel: $n_{\mathrm{T}}>n_{\mathrm{R}}$

We have more transmitters than receivers:

\Longrightarrow orthogonalization not possible: it is not optimal to ignore inputs \Longrightarrow let's start with MISO: $n_{\mathrm{T}}>1, n_{\mathrm{R}}=1$

$$
Y=h_{1} x_{1}+h_{2} x_{2}+\cdots+h_{n_{\top}} x_{n_{\top}}+Z
$$

MISO Example: Average-Power Constraint Only

$$
Y=9 X_{1}+3 X_{2}+Z \quad \text { average-power constraint only }
$$

MISO Example: Average-Power Constraint Only

$$
Y=9 X_{1}+3 X_{2}+Z \quad \text { average-power constraint only }
$$

- X_{1} sees a much better channel!
\Longrightarrow put all energy into first antenna: $X_{2}=0$
\Longrightarrow like SISO with $h=h_{\max }=h_{1}=9$

An Observation (about SISO Case)

At high power: because of additive noise,

$$
\begin{aligned}
\mathrm{I}(X ; Y) & =\mathrm{h}(Y)-\mathrm{h}(Y \mid X) \\
& =\mathrm{h}(X+Z)-\mathrm{h}(X+Z \mid X) \\
& =\mathrm{h}(X+Z)-\mathrm{h}(Z) \\
& \approx \mathrm{h}(X)-\mathrm{h}(Z)
\end{aligned}
$$

An Observation (about SISO Case)

At high power: because of additive noise,

$$
\begin{aligned}
\mathrm{I}(X ; Y) & =\mathrm{h}(Y)-\mathrm{h}(Y \mid X) \\
& =\mathrm{h}(X+Z)-\mathrm{h}(X+Z \mid X) \\
& =\mathrm{h}(X+Z)-\mathrm{h}(Z) \\
& \approx \mathrm{h}(X)-\mathrm{h}(Z)
\end{aligned}
$$

\Longrightarrow a good input maximizes differential entropy!

An Observation (about SISO Case)

At high power: because of additive noise,

$$
\begin{aligned}
\mathrm{I}(X ; Y) & =\mathrm{h}(Y)-\mathrm{h}(Y \mid X) \\
& =\mathrm{h}(X+Z)-\mathrm{h}(X+Z \mid X) \\
& =\mathrm{h}(X+Z)-\mathrm{h}(Z) \\
& \approx \mathrm{h}(X)-\mathrm{h}(Z)
\end{aligned}
$$

\Longrightarrow a good input maximizes differential entropy!

- if $0 \leq X \leq A$:
- if $X \geq 0$ and $\mathrm{E}[X] \leq \mathrm{E}$:
- if both $\mathrm{E}[X] \leq \mathrm{E}$ and $0 \leq X \leq \mathrm{A}$:

$$
\begin{aligned}
X & \sim \operatorname{Uniform}([0, \mathrm{~A}]) \\
X & \sim \operatorname{Exp}(\mathrm{E}) \\
X & \sim \operatorname{truncExp}([0, \mathrm{~A}], \mathrm{E})
\end{aligned}
$$

MISO Example: Average-Power Constraint Only

$$
Y=9 X_{1}+3 X_{2}+Z \quad \text { average-power constraint only }
$$

- X_{1} sees a much better channel!
\Longrightarrow put all energy into first antenna: $X_{2}=0$
\Longrightarrow like SISO with $h=h_{\text {max }}=h_{1}=9$

MISO Example: Average-Power Constraint Only

$$
Y=9 X_{1}+3 X_{2}+Z \quad \text { average-power constraint only }
$$

- X_{1} sees a much better channel!
\Longrightarrow put all energy into first antenna: $X_{2}=0$
\Longrightarrow like SISO with $h=h_{\max }=h_{1}=9$
$\Longrightarrow X_{1} \sim \operatorname{Exp}(\mathrm{E})$ (at high SNR)

Average-power constraint only:

$$
\mathrm{C}_{\text {MISO }}(\mathrm{E})=\mathrm{C}_{\text {SISO }}\left(h_{\max } \mathrm{E}\right)
$$

MISO Example: Peak-Power Constraint Only

$$
Y=9 X_{1}+3 X_{2}+Z
$$

MISO Example: Peak-Power Constraint Only

$$
Y=9 X_{1}+3 X_{2}+Z
$$

- make full use of each antenna!
\Longrightarrow "beamforming": choose $X_{1}=X_{2} \triangleq X \sim \operatorname{Uniform}([0, \mathcal{A}])$

MISO Example: Peak-Power Constraint Only

$$
Y=9 X_{1}+3 X_{2}+Z
$$

- make full use of each antenna!
\Longrightarrow "beamforming": choose $X_{1}=X_{2} \triangleq X \sim \operatorname{Uniform}([0, \mathcal{A}])$
$\Longrightarrow Y=12 X+Z$
\Longrightarrow like SISO with $h=h_{\text {sum }}=h_{1}+h_{2}=12$

MISO Example: Peak-Power Constraint Only

$$
Y=9 X_{1}+3 X_{2}+Z
$$

- make full use of each antenna!
\Longrightarrow "beamforming": choose $X_{1}=X_{2} \triangleq X \sim \operatorname{Uniform}([0, \mathcal{A}])$
$\Longrightarrow Y=12 X+Z$
\Longrightarrow like SISO with $h=h_{\text {sum }}=h_{1}+h_{2}=12$
- Note: $\mathrm{E}\left[X_{1}\right]+\mathrm{E}\left[X_{2}\right]=\frac{\mathrm{A}}{2}+\frac{\mathrm{A}}{2}=\mathrm{A} \Longrightarrow$ any $\alpha \geq 1$ works!

MISO Example: Peak-Power Constraint Only

$$
Y=9 X_{1}+3 X_{2}+Z \quad \text { with } \alpha=1.2
$$

- $\alpha \geq \frac{n_{T}}{2}=\frac{2}{2}=1$
\Longrightarrow "beamforming": choose $X_{1}=X_{2} \triangleq X \sim$ Uniform $([0, A])$
$\Longrightarrow Y=12 X+Z$
\Longrightarrow like SISO with $h=h_{\text {sum }}=h_{1}+h_{2}=12$
- Note: $\mathrm{E}\left[X_{1}\right]+\mathrm{E}\left[X_{2}\right]=\frac{\mathrm{A}}{2}+\frac{\mathrm{A}}{2}=\mathrm{A} \Longrightarrow$ any $\alpha \geq 1$ works!

MISO Example: Peak-Power Constraint Only

$$
Y=9 X_{1}+3 X_{2}+Z \quad \text { with } \alpha=1.2
$$

- $\alpha \geq \frac{n_{\mathrm{T}}}{2}=\frac{2}{2}=1$
\Longrightarrow "beamforming": choose $X_{1}=X_{2} \triangleq X \sim$ Uniform $([0, A])$
$\Longrightarrow Y=12 X+Z$
\Longrightarrow like SISO with $h=h_{\text {sum }}=h_{1}+h_{2}=12$
- Note: $\mathrm{E}\left[X_{1}\right]+\mathrm{E}\left[X_{2}\right]=\frac{A}{2}+\frac{\mathrm{A}}{2}=\mathrm{A} \Longrightarrow$ any $\alpha \geq 1$ works!
$\alpha \geq \frac{n_{T}}{2}$ (including peak-power constraint only):

$$
\mathrm{C}_{\mathrm{MISO}}(\mathrm{~A}, \alpha \mathcal{A})=\mathrm{C}_{\mathrm{SISO}}\left(h_{\text {sum }} \mathcal{A}, \frac{h_{\text {sum }}}{2} \mathcal{A}\right)
$$

MISO Example: Both Constraints: A First Attempt

$$
Y=9 X_{1}+3 X_{2}+Z \quad \text { with } \alpha=0.9
$$

- $X_{1}=X_{2}=X \sim \operatorname{Uniform}([0, \mathrm{~A}])$ is not possible because of averagepower constraint

MISO Example: Both Constraints: A First Attempt

$$
Y=9 X_{1}+3 X_{2}+Z \quad \text { with } \alpha=0.9
$$

- $X_{1}=X_{2}=X \sim \operatorname{Uniform}([0, \mathrm{~A}])$ is not possible because of averagepower constraint
- Shall we give full average power of 0.5 to X_{1} and the rest of 0.4 to X_{2} ?

$$
X_{1} \sim \operatorname{Uniform}([0, A]) \quad X_{2}=0.8 X_{1} \sim \operatorname{Uniform}([0,0.8 \mathrm{~A}])
$$

MISO Example: Both Constraints: A First Attempt

$$
Y=9 X_{1}+3 X_{2}+Z \quad \text { with } \alpha=0.9
$$

- $X_{1}=X_{2}=X \sim \operatorname{Uniform}([0, A])$ is not possible because of averagepower constraint
- Shall we give full average power of 0.5 to X_{1} and the rest of 0.4 to X_{2} ?

$$
X_{1} \sim \operatorname{Uniform}([0, A]) \quad X_{2}=0.8 X_{1} \sim \text { Uniform }([0,0.8 A])
$$

But this means that we do not make full use of peak power on X_{2} !

MISO Example: Both Constraints: A Second Attempt

$$
Y=9 X_{1}+3 X_{2}+Z \quad \text { with } \alpha=0.9
$$

- Maybe better:

$$
X_{1} \sim \operatorname{Uniform}([0, \mathcal{A}]) \quad X_{2} \sim \operatorname{truncExp}([0, \mathcal{A}], 0.4 \mathcal{A})
$$

\Longrightarrow now we make full use of peak and average power

MISO Example: Both Constraints: A Second Attempt

$$
Y=9 X_{1}+3 X_{2}+Z \quad \text { with } \alpha=0.9
$$

- Maybe better:

$$
X_{1} \sim \operatorname{Uniform}([0, \mathcal{A}]) \quad X_{2} \sim \operatorname{truncExp}([0, \mathcal{A}], 0.4 \mathcal{A})
$$

\Longrightarrow now we make full use of peak and average power

- But: X_{1} and X_{2} are not correlated, but $X_{1} \Perp X_{2}$ (?)
$\Longrightarrow 9 X_{1}+3 X_{2}$ has a bad mix-distribution

MISO Example: Both Constraints: A Third Attempt

$$
Y=9 X_{1}+3 X_{2}+Z \quad \text { with } \alpha=0.9
$$

- If we want full correlation:

$$
X_{1}=X_{2}=X \sim \operatorname{truncExp}([0, \mathcal{A}], 0.45 A)
$$

MISO Example: Both Constraints: A Third Attempt

$$
Y=9 X_{1}+3 X_{2}+Z \quad \text { with } \alpha=0.9
$$

- If we want full correlation:

$$
X_{1}=X_{2}=X \sim \operatorname{truncExp}([0, \mathcal{A}], 0.45 A)
$$

\Longrightarrow now we make full use of peak and average power \& we have full correlation

MISO Example: Both Constraints: A Third Attempt

$$
Y=9 X_{1}+3 X_{2}+Z \quad \text { with } \alpha=0.9
$$

- If we want full correlation:

$$
X_{1}=X_{2}=X \sim \operatorname{truncExp}([0, \mathcal{A}], 0.45 A)
$$

\Longrightarrow now we make full use of peak and average power \& we have full correlation

- But: we do not favor X_{1} over X_{2} !

How to Optimize Correctly? (1/4)

$$
Y=9 X_{1}+3 X_{2}+Z \quad \text { with } \alpha=0.9
$$

How to Optimize Correctly? (1/4)

$$
Y=9 X_{1}+3 X_{2}+Z \quad \text { with } \alpha=0.9
$$

Clue: think about energy-efficiency!

How to Optimize Correctly? (1/4)

$$
Y=9 X_{1}+3 X_{2}+Z \quad \text { with } \alpha=0.9
$$

Clue: think about energy-efficiency!
What is the range that Y can take on (ignoring noise)?

$$
0 \leq Y \leq(9+3) A=12 A
$$

How to Optimize Correctly? (1/4)

$$
Y=9 X_{1}+3 X_{2}+Z \quad \text { with } \alpha=0.9
$$

Clue: think about energy-efficiency!
What is the range that Y can take on (ignoring noise)?

$$
0 \leq Y \leq(9+3) A=12 A
$$

\Longrightarrow maximum 12A can only be reached if we make full use of both LEDs!

How to Optimize Correctly? (2/4)

$$
Y=9 X_{1}+3 X_{2}+Z \quad \text { with } \alpha=0.9
$$

- What is the most energy-efficient way to reach, e.g., $Y=2 A$?

How to Optimize Correctly? (2/4)

$$
Y=9 X_{1}+3 X_{2}+Z \quad \text { with } \alpha=0.9
$$

- What is the most energy-efficient way to reach, e.g., $Y=2 A$?

$$
\begin{array}{ll}
9 \cdot \frac{0}{9} A+3 \cdot \frac{2}{3} \lambda=2 A & \frac{0}{9} A+\frac{2}{3} A=\frac{6}{9} \lambda \\
9 \cdot \frac{1}{9} A+3 \cdot \frac{1}{3} A=2 A & \frac{1}{9} A+\frac{1}{3} A=\frac{4}{9} \lambda \\
9 \cdot \frac{2}{9} A+3 \cdot \frac{0}{3} \lambda=2 A & \frac{2}{9} A+\frac{0}{3} A=\frac{2}{9} \lambda
\end{array}
$$

How to Optimize Correctly? (2/4)

$$
Y=9 X_{1}+3 X_{2}+Z \quad \text { with } \alpha=0.9
$$

- What is the most energy-efficient way to reach, e.g., $Y=2 A$?

$$
\begin{array}{llrl}
9 \cdot \frac{0}{9} A+3 \cdot \frac{2}{3} A & =2 A & \frac{0}{9} A+\frac{2}{3} A & =\frac{6}{9} A \\
9 \cdot \frac{1}{9} A+3 \cdot \frac{1}{3} A & =2 A & \frac{1}{9} A+\frac{1}{3} A & =\frac{4}{9} A \\
9 \cdot \frac{2}{9} A+3 \cdot \frac{0}{3} A & =2 A & \frac{2}{9} A+\frac{0}{3} A & =\frac{2}{9} A
\end{array}
$$

\Longrightarrow only use X_{1} and set $X_{2}=0$!

How to Optimize Correctly? (2/4)

$$
Y=9 X_{1}+3 X_{2}+Z \quad \text { with } \alpha=0.9
$$

- What is the most energy-efficient way to reach, e.g., $Y=2 A$?

$$
\begin{array}{llrl}
9 \cdot \frac{0}{9} A+3 \cdot \frac{2}{3} A & =2 A & \frac{0}{9} A+\frac{2}{3} A & =\frac{6}{9} A \\
9 \cdot \frac{1}{9} A+3 \cdot \frac{1}{3} A & =2 A & \frac{1}{9} A+\frac{1}{3} A & =\frac{4}{9} A \\
9 \cdot \frac{2}{9} A+3 \cdot \frac{0}{3} A & =2 A & \frac{2}{9} A+\frac{0}{3} A & =\frac{2}{9} A
\end{array}
$$

\Longrightarrow only use X_{1} and set $X_{2}=0$!

- What is the most energy-efficient way to reach, e.g., $Y=10 A$?

How to Optimize Correctly? (2/4)

$$
Y=9 X_{1}+3 X_{2}+Z \quad \text { with } \alpha=0.9
$$

- What is the most energy-efficient way to reach, e.g., $Y=2 A$?

$$
\begin{array}{llrl}
9 \cdot \frac{0}{9} A+3 \cdot \frac{2}{3} A & =2 A & \frac{0}{9} A+\frac{2}{3} A & =\frac{6}{9} A \\
9 \cdot \frac{1}{9} A+3 \cdot \frac{1}{3} A & =2 A & \frac{1}{9} A+\frac{1}{3} A & =\frac{4}{9} A \\
9 \cdot \frac{2}{9} A+3 \cdot \frac{0}{3} A & =2 A & \frac{2}{9} A+\frac{0}{3} A & =\frac{2}{9} A
\end{array}
$$

\Longrightarrow only use X_{1} and set $X_{2}=0$!

- What is the most energy-efficient way to reach, e.g., $Y=10$ A?
\Longrightarrow set X_{1} to full power and get the rest with X_{2} :

$$
9 \cdot 1 A+3 \cdot \frac{1}{3} A=10 A \quad 1 A+\frac{1}{3} A=\frac{4}{3} A
$$

How to Optimize Correctly? (3/4)

- What is the most efficient way to have $Y \in[0,9 A]$?

How to Optimize Correctly? (3/4)

- What is the most efficient way to have $Y \in[0,9 A]$? \Longrightarrow only use X_{1} for signaling and set $X_{2}=0$!

How to Optimize Correctly? (3/4)

- What is the most efficient way to have $Y \in[0,9 A]$? \Longrightarrow only use X_{1} for signaling and set $X_{2}=0$!
- What is the most efficient way to have $Y \in[9 \mathrm{~A}, 12 \mathrm{~A}]$?

How to Optimize Correctly? (3/4)

- What is the most efficient way to have $Y \in[0,9 A]$? \Longrightarrow only use X_{1} for signaling and set $X_{2}=0$!
- What is the most efficient way to have $Y \in[9 A, 12 A]$? \Longrightarrow set $X_{1}=A$ and use X_{2} for signaling!

How to Optimize Correctly? (3/4)

- What is the most efficient way to have $Y \in[0,9 A]$? \Longrightarrow only use X_{1} for signaling and set $X_{2}=0$!
- What is the most efficient way to have $Y \in[9 A, 12 A]$? \Longrightarrow set $X_{1}=A$ and use X_{2} for signaling!
- How to combine?

How to Optimize Correctly? (3/4)

- What is the most efficient way to have $Y \in[0,9 A]$? \Longrightarrow only use X_{1} for signaling and set $X_{2}=0$!
- What is the most efficient way to have $Y \in[9 A, 12 A]$? \Longrightarrow set $X_{1}=A$ and use X_{2} for signaling!
- How to combine?

Note: if possible Y should be uniform!

How to Optimize Correctly? (4/4)

- with probability $\frac{9 A}{9 A+3 A}=\frac{3}{4}$ choose $X_{1} \sim$ Uniform $([0, A])$ and $X_{2}=0$
- with probability $\frac{3 A}{9 A+3 A}=\frac{1}{4}$ choose $X_{1}=A$ and $X_{2} \sim \operatorname{Uniform}([0, A])$

How to Optimize Correctly? (4/4)

- with probability $\frac{9 A}{9 A+3 A}=\frac{3}{4}$ choose $X_{1} \sim \operatorname{Uniform}([0, A])$ and $X_{2}=0$
- with probability $\frac{3 A}{9 A+3 A}=\frac{1}{4}$ choose $X_{1}=A$ and $X_{2} \sim \operatorname{Uniform}([0, A])$ $\Longrightarrow Y \sim$ Uniform $([0,12 A])$

How to Optimize Correctly? (4/4)

- with probability $\frac{9 A}{9 A+3 A}=\frac{3}{4}$ choose $X_{1} \sim \operatorname{Uniform}([0, A])$ and $X_{2}=0$
- with probability $\frac{3 A}{9 A+3 A}=\frac{1}{4}$ choose $X_{1}=A$ and $X_{2} \sim \operatorname{Uniform}([0, A])$ $\Longrightarrow Y \sim \operatorname{Uniform}([0,12 A])$
- Check:
$\mathrm{E}\left[X_{1}+X_{2}\right]=\frac{3}{4}\left(\frac{A}{2}+0\right)+\frac{1}{4}\left(A+\frac{A}{2}\right)=\frac{6}{8} A=0.75 A \leq 0.9 A$
\Longrightarrow works for all $\alpha \geq 0.75 \triangleq \alpha_{\text {th }}$

What about $\alpha<\alpha_{\mathrm{th}}$?

$$
Y=9 X_{1}+3 X_{2}+Z \quad \text { with } \alpha=0.1
$$

- The scheme above does not work: average power too large!

What about $\alpha<\alpha_{\mathrm{th}}$?

$$
Y=9 X_{1}+3 X_{2}+Z \quad \text { with } \alpha=0.1
$$

- The scheme above does not work: average power too large! \Longrightarrow reduce average power in each interval to λA for some λ

$$
(0<\lambda<\alpha)
$$

What about $\alpha<\alpha_{\mathrm{th}}$?

$$
Y=9 X_{1}+3 X_{2}+Z \quad \text { with } \alpha=0.1
$$

- The scheme above does not work: average power too large! \Longrightarrow reduce average power in each interval to λA for some λ $(0<\lambda<\alpha)$
\Longrightarrow instead of uniform, use truncExp:
with prob. $1-(\alpha-\lambda): \quad X_{1} \sim \operatorname{truncExp}([0, \mathcal{A}], \lambda A) \quad X_{2}=0$
with prob. $\alpha-\lambda: \quad X_{1}=A \quad X_{2} \sim \operatorname{truncExp}([0, A], \lambda A)$

What about $\alpha<\alpha_{\mathrm{th}}$?

$$
Y=9 X_{1}+3 X_{2}+Z \quad \text { with } \alpha=0.1
$$

- The scheme above does not work: average power too large! \Longrightarrow reduce average power in each interval to λA for some λ $(0<\lambda<\alpha)$
\Longrightarrow instead of uniform, use truncExp:
with prob. $1-(\alpha-\lambda): \quad X_{1} \sim \operatorname{truncExp}([0, A], \lambda A) \quad X_{2}=0$
with prob. $\alpha-\lambda: \quad X_{1}=A \quad X_{2} \sim \operatorname{truncExp}([0, A], \lambda A)$
- Note:
- choice of prob. $\alpha-\lambda$ results in $\mathrm{E}\left[X_{1}+X_{2}\right]=\alpha A$
- we need to numerically optimize over λ

Principle: Find Most Energy-Efficient Signaling (1/2)

- To have $\bar{X} \triangleq 9 X_{1}+3 X_{2}$ operate in the interval $[0,9 A]$, it is most energy-efficient to set $X_{2}=0$
- To have $\bar{X}=9 X_{1}+3 X_{2}$ operate in the interval [9A, 12A], it is most energy-efficient to set $X_{1}=A$

Principle: Find Most Energy-Efficient Signaling (2/2)

Let $h_{1} \geq h_{2} \geq \cdots \geq h_{n_{\mathrm{T}}}$ be ordered and define

$$
s_{k} \triangleq \sum_{i=1}^{k} h_{i} \quad \bar{X} \triangleq \sum_{k=1}^{n_{\top}} h_{k} X_{k}
$$

Extension to Rank-Deficient MIMO: $n_{\mathrm{T}}>n_{R}$

$$
\begin{aligned}
\mathbf{Y} & =\mathbf{H X}+\mathbf{Z} \\
& =\left[\mathbf{h}_{1} \mathbf{h}_{2} \cdots \mathbf{h}_{n_{\mathrm{T}}}\right] \mathbf{X}+\mathbf{Z} \\
& =\mathbf{h}_{1} X_{1}+\mathbf{h}_{2} X_{2}+\cdots+\mathbf{h}_{n_{\mathrm{T}}} X_{n_{\mathrm{T}}}+\mathbf{Z}
\end{aligned}
$$

- Linear combination of vectors $\mathbf{h}_{1}, \ldots, \mathbf{h}_{n_{T}}$ with factors $0 \leq X_{i} \leq A$!

Extension to Rank-Deficient MIMO: $n_{\mathrm{T}}>n_{R}$

$$
\begin{aligned}
\mathbf{Y} & =\mathbf{H X}+\mathbf{Z} \\
& =\left[\mathbf{h}_{1} \mathbf{h}_{2} \cdots \mathbf{h}_{n_{\mathrm{T}}}\right] \mathbf{X}+\mathbf{Z} \\
& =\mathbf{h}_{1} X_{1}+\mathbf{h}_{2} X_{2}+\cdots+\mathbf{h}_{n_{\mathrm{T}}} X_{n_{\mathrm{T}}}+\mathbf{Z}
\end{aligned}
$$

- Linear combination of vectors $\mathbf{h}_{1}, \ldots, \mathbf{h}_{n_{T}}$ with factors $0 \leq X_{i} \leq A$!
- "Ordering" of antennas depending on their gain not trivial anymore

Extension to Rank-Deficient MIMO: $n_{\mathrm{T}}>n_{R}$

$$
\begin{aligned}
\mathbf{Y} & =\mathbf{H X}+\mathbf{Z} \\
& =\left[\mathbf{h}_{1} \mathbf{h}_{2} \cdots \mathbf{h}_{n_{\mathrm{T}}}\right] \mathbf{X}+\mathbf{Z} \\
& =\mathbf{h}_{1} X_{1}+\mathbf{h}_{2} X_{2}+\cdots+\mathbf{h}_{n_{\mathrm{T}}} X_{n_{\mathrm{T}}}+\mathbf{Z}
\end{aligned}
$$

- Linear combination of vectors $\mathbf{h}_{1}, \ldots, \mathbf{h}_{n_{T}}$ with factors $0 \leq X_{i} \leq A$!
- "Ordering" of antennas depending on their gain not trivial anymore
- What values can Y achieve (ignoring noise)?

MIMO Example ($n_{\mathrm{T}}=3, n_{\mathrm{R}}=2$): Parallelepiped

$$
\mathrm{H}=\left[\begin{array}{lll}
8 & 2.5 & 1 \\
1 & 2.5 & 3
\end{array}\right]
$$

MIMO Example ($n_{\mathrm{T}}=3, n_{\mathrm{R}}=2$): Parallelepiped

$$
\mathrm{H}=\left[\begin{array}{lll}
8 & 2.5 & 1 \\
1 & 2.5 & 3
\end{array}\right]
$$

Energy-Optimal Signaling

- Basic idea the same as before: every point in the parallelepiped can be reached in a most energy-efficient way:
- "weak" antennas switched off
- "strong" antennas switched to full power A
- n_{R} antennas chosen for signaling

Energy-Optimal Signaling

- Basic idea the same as before: every point in the parallelepiped can be reached in a most energy-efficient way:
- "weak" antennas switched off
- "strong" antennas switched to full power A
- n_{R} antennas chosen for signaling
- The big questions is:

Which are the strong and which are the weak antennas?

Energy-Optimal Signaling

- Basic idea the same as before: every point in the parallelepiped can be reached in a most energy-efficient way:
- "weak" antennas switched off
- "strong" antennas switched to full power A
- n_{R} antennas chosen for signaling
- The big questions is:

Which are the strong and which are the weak antennas?
\Longrightarrow depends on position of point!

MIMO Example ($n_{\mathrm{T}}=3, n_{\mathrm{R}}=2$)

$$
\mathrm{H}=\left[\begin{array}{lll}
8 & 2.5 & 1 \\
1 & 2.5 & 3
\end{array}\right]
$$

MIMO Example ($n_{\mathrm{T}}=3, n_{\mathrm{R}}=2$)

$$
\mathrm{H}=\left[\begin{array}{lll}
8 & 2.5 & 1 \\
1 & 2.5 & 3
\end{array}\right]
$$

MIMO Example ($n_{\mathrm{T}}=3, n_{\mathrm{R}}=2$)

$$
\mathrm{H}=\left[\begin{array}{lll}
8 & 2.5 & 1 \\
1 & 2.5 & 3
\end{array}\right]
$$

MIMO Example ($n_{\mathrm{T}}=3, n_{\mathrm{R}}=2$)

$$
\mathrm{H}=\left[\begin{array}{lll}
8 & 2.5 & 1 \\
1 & 2.5 & 3
\end{array}\right]
$$

this second way is more efficient!

MIMO Example ($n_{\mathrm{T}}=3, n_{\mathrm{R}}=2$)

$$
\mathrm{H}=\left[\begin{array}{lll}
8 & 2.5 & 1 \\
1 & 2.5 & 3
\end{array}\right]
$$

red path uses power $0.22 A+0.76 A=0.98 A$ direct path uses power
1A

MIMO Example ($n_{\mathrm{T}}=3, n_{\mathrm{R}}=2$)

$$
\mathrm{H}=\left[\begin{array}{lll}
8 & 2.5 & 1 \\
1 & 2.5 & 3
\end{array}\right]
$$

red path uses power $0.22 A+0.76 A=0.98 A$ direct path uses power 1A
$\Longrightarrow \mathbf{h}_{2}$ is weaker!

MIMO Example ($n_{\mathrm{T}}=3, n_{\mathrm{R}}=2$)

$$
\mathrm{H}=\left[\begin{array}{lll}
8 & 2.5 & 1 \\
1 & 2.5 & 3
\end{array}\right]
$$

\Longrightarrow first switch X_{2} off!

MIMO Example ($n_{\mathrm{T}}=3, n_{\mathrm{R}}=2$)

$$
\mathrm{H}=\left[\begin{array}{lll}
8 & 2.5 & 1 \\
1 & 2.5 & 3
\end{array}\right]
$$

\Longrightarrow first switch X_{2} off!

MIMO Example ($n_{\boldsymbol{T}}=3, n_{\boldsymbol{R}}=2$)

$\mathbf{H}=\left[\begin{array}{lll}8 & 2.5 & 1 \\ 1 & 2.5 & 3\end{array}\right]$
\Longrightarrow set X_{3} to $A!$

MIMO Example ($n_{\boldsymbol{T}}=3, n_{\boldsymbol{R}}=2$)

$\mathbf{H}=\left[\begin{array}{lll}8 & 2.5 & 1 \\ 1 & 2.5 & 3\end{array}\right]$
\Longrightarrow set X_{1} to $\mathrm{A}!$

MIMO Example ($n_{\boldsymbol{T}}=3, n_{\boldsymbol{R}}=2$)

$$
\mathrm{H}=\left[\begin{array}{lll}
8 & 2.5 & 1 \\
1 & 2.5 & 3
\end{array}\right]
$$

blue area: $X_{2}=0$ use X_{1}, X_{3}
red area: $X_{3}=A$ use X_{1}, X_{2}
cyan area: $X_{1}=A$ use X_{2}, X_{3}

Another MIMO Example ($n_{\mathrm{T}}=3, n_{\mathrm{R}}=2$)

$$
\mathrm{H}=\left[\begin{array}{lll}
8 & 2.8 & 1 \\
1 & 2.8 & 3
\end{array}\right]
$$

red path uses power $0.24 A+0.85 A=1.09 A$ direct path uses power
1A
$\Longrightarrow \mathbf{h}_{2}$ is stronger!

Another MIMO Example ($n_{\mathrm{T}}=3, n_{\mathrm{R}}=2$)

$\mathbf{H}=\left[\begin{array}{lll}8 & 2.8 & 1 \\ 1 & 2.8 & 3\end{array}\right]$
red area: $X_{3}=0$ use X_{1}, X_{2}
cyan area: $X_{1}=0$
use X_{2}, X_{3}
blue area: $X_{2}=\mathrm{A}$
use X_{1}, X_{3}

Another MIMO Example ($n_{\mathrm{T}}=3, n_{\mathrm{R}}=2$)

$$
\mathrm{H}=\left[\begin{array}{lll}
8 & 2.5 & 1 \\
1 & 2.5 & 3
\end{array}\right]
$$

blue area: $X_{2}=0$ use X_{1}, X_{3}
red area: $X_{3}=A$ use X_{1}, X_{2}
cyan area: $X_{1}=A$ use X_{2}, X_{3}

Choose Distribution on Energy-Optimal Signaling

For high power:

- if $\alpha \geq \alpha_{\text {th }}$: use uniform distribution on each parallelogram
- if $\alpha<\alpha_{\mathrm{th}}$: use generalized truncExp distribution on each parallelogram

MIMO with $n_{\mathrm{T}}=4$ and $n_{\mathrm{R}}=2$: Example 1

MIMO with $n_{\mathrm{T}}=4$ and $n_{\mathrm{R}}=2$: Example 2

MIMO with $n_{\mathrm{T}}=4$ and $n_{\mathrm{R}}=2$: Example 3

MIMO with $n_{\mathrm{T}}=4$ and $n_{\mathrm{R}}=2$: Example 4

MIMO with $n_{\mathrm{T}}=4$ and $n_{\mathrm{R}}=2$: Example 5

$$
\mathrm{H}=\left[\begin{array}{llll}
9 & 4 & 1.5 & 1 \\
1 & 2 & 1.5 & 3
\end{array}\right]
$$

MIMO with $n_{\top}=4$ and $n_{\mathrm{R}}=2$: Example 6

Summary and Comments

- Optimal signaling: when thinking about capacity, firstly one needs to figure out the most energy-efficient signaling

Summary and Comments

- Optimal signaling: when thinking about capacity, firstly one needs to figure out the most energy-efficient signaling
- For optical MIMO free-space communication: with certain probability
- pick n_{R} antennas for signaling
- set the other antennas to 0 or A
\Longrightarrow this splits achievable parallelepiped into parallelograms

Summary and Comments

- Optimal signaling: when thinking about capacity, firstly one needs to figure out the most energy-efficient signaling
- For optical MIMO free-space communication: with certain probability
- pick n_{R} antennas for signaling
- set the other antennas to 0 or A
\Longrightarrow this splits achievable parallelepiped into parallelograms
- This signaling tells also a lot about concrete use of system

Summary and Comments

- Optimal signaling: when thinking about capacity, firstly one needs to figure out the most energy-efficient signaling
- For optical MIMO free-space communication: with certain probability
- pick n_{R} antennas for signaling
- set the other antennas to 0 or A
\Longrightarrow this splits achievable parallelepiped into parallelograms
- This signaling tells also a lot about concrete use of system
- We have focused on high SNR (ignoring noise), but principle is general

Summary and Comments

- Optimal signaling: when thinking about capacity, firstly one needs to figure out the most energy-efficient signaling
- For optical MIMO free-space communication: with certain probability
- pick n_{R} antennas for signaling
- set the other antennas to 0 or A
\Longrightarrow this splits achievable parallelepiped into parallelograms
- This signaling tells also a lot about concrete use of system
- We have focused on high SNR (ignoring noise), but principle is general
- The nonnegativity constraint is not crucial for this discussion

Summary and Comments

- Optimal signaling: when thinking about capacity, firstly one needs to figure out the most energy-efficient signaling
- For optical MIMO free-space communication: with certain probability
- pick n_{R} antennas for signaling
- set the other antennas to 0 or A
\Longrightarrow this splits achievable parallelepiped into parallelograms
- This signaling tells also a lot about concrete use of system
- We have focused on high SNR (ignoring noise), but principle is general
- The nonnegativity constraint is not crucial for this discussion
- We have used the same approach also in the case when one has both first- and second-moment constraints

References

- Stefan M. Moser, Ligong Wang, Michèle Wigger: Capacity Results on Multiple-Input Single-Output Wireless Optical Channels, IEEE Transactions on Information Theory, vol. 64, no. 11, pp. 6954-6966, November 2018.
- Longguang Li, Stefan M. Moser, Ligong Wang, Michèle Wigger: "On the Capacity of MIMO Optical Wireless Channels", IEEE Transactions on Information Theory, vol. 66, no. 9, pp. 5660-5682, September 2020.
- Shuai Ma, Stefan M. Moser, Ligong Wang, Michèle Wigger: "Signaling for MISO Channels Under First- and Second-Moment Constraints", in Proceedings 2022 IEEE International Symposium on Information Theory (ISIT'22), Helsinki, Finland, Jun. 26 - Jul. 1, 2022, pp. 2648-2653.

MIMO Example with $n_{\mathrm{T}}=7$ and $n_{\mathrm{R}}=2$

Orthogonalization of $\mathrm{H}\left(n_{\mathrm{R}} \geq n_{\mathrm{T}}\right)$ with $\mathrm{Z} \sim \mathcal{N}(\mathbf{0}, \mathrm{K})$

$$
\begin{aligned}
& \mathrm{I}(\mathbf{X} ; \mathbf{H X}+\mathbf{Z})=\mathrm{I}\left(\mathbf{X} ; \mathbf{S}^{-\top} \mathbf{H} \mathbf{X}+\mathrm{S}^{-\top} \mathbf{Z}\right) \\
& =I\left(\mathbf{X} ; \mathbf{S}^{-\top} H \mathbf{X}+\tilde{\mathbf{Z}}\right) \\
& =I(\mathbf{X} ; U \Sigma \vee \mathbf{X}+\tilde{\mathbf{Z}}) \\
& =\mathrm{I}\left(\mathbf{X} ; \Sigma \mathbf{V} \mathbf{X}+\mathbf{U}^{\top} \tilde{\mathbf{Z}}\right) \\
& =\mathrm{I}(\mathbf{X} ; \Sigma \mathbf{V} \mathbf{X}+\tilde{\mathbf{Z}}) \\
& =\mathrm{I}\left(\mathbf{X} ; \Sigma_{n_{\mathrm{T}}} \mathbf{V} \mathbf{X}+\tilde{\mathbf{Z}}^{\left(n_{\mathrm{T}}\right)}, \tilde{Z}_{n_{\mathrm{T}}+1}, \ldots, \tilde{Z}_{n_{\mathrm{R}}}\right) \\
& =\mathrm{I}\left(\mathbf{X} ; \Sigma_{n_{\mathrm{T}}} \mathbf{V} \mathbf{X}+\tilde{\mathbf{Z}}^{\left(n_{T}\right)}\right) \\
& =\mathrm{I}\left(\mathbf{X} ; \tilde{\mathrm{H}} \mathbf{X}+\tilde{\mathbf{Z}}^{\left(n_{T}\right)}\right) \\
& =\mathrm{I}\left(\mathbf{X} ; \mathbf{X}+\mathbf{Z}^{\prime\left(n_{T}\right)}\right) \quad \mathbf{Z}^{\prime\left(n_{\mathrm{T}}\right)} \sim \mathcal{N}\left(\mathbf{0},\left(\mathbf{H}^{\top} \mathrm{K}^{-1} \mathbf{H}\right)^{-1}\right) \\
& \Sigma=\binom{\Sigma_{n_{\top}}}{0} \\
& \text { SVD: } S^{-\top} H=U \Sigma V \\
& \tilde{Z}_{n_{\mathrm{T}}+1}^{n_{\mathrm{R}}} \text { indep. } \\
& \Sigma_{n_{\mathrm{T}}} \mathrm{~V} \text { is square } \\
& \text { parallel channels }
\end{aligned}
$$

\Longrightarrow after transformation redundant receiver antennas are ignored
\Longrightarrow reduced to $n_{\mathrm{T}} \times n_{\mathrm{T}}$ square case with parallel channels

