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Low-latency wireless communications

® Internet of Things
® Machine-to-machine communications
® tactile Internet

- low latency and high reliability

- transmission of short packets with low probability of error
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Example: Ultra-reliable and low-latency communications

Services supported by 5G:
® enhanced mobile broadband (eMBB)

® massive machine-type communications (mMTC)

¢ ultra-reliable and low-latency communications (URLLC)

URLLC
® Total latency less than 1ms
» low-latency + limited bandwidth = short packets

® Lessthan 1 packet loss in 10° packets
» requires powerful forward error correction (channel coding)
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Fundamental limits

Traditionally, fundamental limits means capacity / outage capacity

Capacity of coherent MIMO fading channels

E. Telatar, “Capacity of multi-antenna Gaussian channels,” Transactions on Emerging
Telecommunications Technologies, November 1999.

Capacity of noncoherent MIMO fading channels

T. L. Marzetta and B. M. Hochwald, “Capacity of a mobile multiple-antenna communication
link in Rayleigh flat fading,” IEEE Transactions on Information Theory, January 1999.

L. Zheng and D. N. C. Tse, “Communication on the Grassmann manifold: A geometric ap-
proach to the noncoherent multiple-antenna channels,” IEEE Transactions on Information
Theory, February 2002.

Capacity versus outage

L. Ozarow, S. Shamai, and A. Wyner, “Information theoretic considerations for cellular mo-
bile radio,” IEEE Transactions on Vehicular Technology, May 1994.

G. Caire, G. Taricco, and E. Biglieri, “Optimum power control over fading channels,” [EEE
Transactions on Information Theory, July 1999.
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Capacity versus short packets

1317--- 7131f Channe

Channel Bi,...,Bk
—_—
Encoder

Decoder

Channel capacity C: largest rate R such that P, — 0 as n — oo
- requires the transmission of long packets

= not necessarily a good benchmark for short-packet communications

Maximum coding rate R*(n, €): Largest rate R for which there exists a
channel code of blocklength n such that P, < €

> R*(n,e) - Casn— oo

- behavior of n — R*(n, €) relevant for short-packet communications
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Finite-blocklength information theory

Nonasymptotic behavior of R*(n, €)

Estimate R*(n, €) by means of bounds:
® Lower bounds: dependence-testing bound (PPV10), RCU, bound (MGiF11)
® Upper bound: meta-converse bound (PPV10)

Asymptotic behavior of R*(n, ¢€)
® Frror exponents:

P*(n, R) = e "Er(B)teln) (E,(R): reliability function)

. Normalapproxtmat/on (Strassen’62, Hayashi'09, PPV10):
R*( —\/ — Q (Ioﬂ> (V: channel dispersion)
n

Y. Polyanskiy, H.V. Poor, S. Verd(, “Channel coding rate in the finite blocklength regime,” IEEE Trans. Inf.
Theory, May 2010.
A. Martinez, A. Guillén i Fabregas, “Saddlepoint approximation of random-coding bounds,” in Proc. Inf.
Theory and Appl. Workshop (ITA), Feb. 2011.
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Normal approximation as benchmark

Coding for short blocks

URLLC will require sending of very short messages in the 10 to 100-bit range.
Channel coding schemes like LDPC and Polar codes need to be fine-tuned

short messages. Candidate coding schemes for URLLC are benchmarked in the|
following figure.

107 §=o~LDPC CCSDS [9 14

{4 F, LDPC UNBPB (CCSDS) [9] | 14
135 LDPC TU KL Code [9] 13
¢ LDPC TUKL Code [9] 9
TBCC,m=8 [r]

Block Error Rate

| e
1 15 2 25 3 35 4 45 s
SNR [dB]
Channel coding for URLLC (credit: Short Block Length Codes for URLLC)

Note that coding techniques for URLLC need to be benchmarked against the
PPV limit as the Shannon limit does not apply for such messages.

(Screenshot: medium. com/5g-nr — Ultra-Reliable Low-Latency Communication (URLLC))
8/42



NA in the analysis of communication protocols

T
node 1 é V*\\ u
ATe

// Station node 3
/

Example: Framed ALOHA protocol
¢ d devices, each sending k bits to base station

® p channel uses divided into s slots of ng = n/s channel uses

® cach device picks randomly a slot to send its packet
» if > 2 devices pick the same slot, then all packets are lost

» if only one device picks a slot, then packet is lost with probability

nsC —k+ (Iogns)/2>
VsV

How to choose s to maximize prob. of successful transmission?

e (k) ~ Q(
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Example: Framed ALOHA protocol

Numerical example:
e d =10, k =192 bits, n = 800

¢ AWGN channel with SNR p = 10 dB
Probability of successful transmission:

d—1

Pg = d (1 — 1) (1—e*(k,ns))
s s

= optimal number of slots s: s* =6

= classic framed-ALOHA protocol (e*(k,ns) = 0): s* =10

G. Durisi, T. Koch, P. Popovski, “Towards massive, ultrareliable, and low-latency wireless communication
with short packets,” Proc. IEEE, Sep. 2016.
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FBL information theory for wireless communications

Channel El""7EK
—_—
Decoder

Bl7'~'aBK Channel
Encoder

® R*(n,e) depends critically on assumed channel model
® most results derived for AWGN channel or DMCs

¢ these channels do not capture:
» coherence time/bandwidth

» channel estimation overhead

» number of transmit/receive antennas

v

tradeoff between diversity and multiplexing

- need FBL information theory for wireless communication channels
- LOLITA
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Rayleigh block-fading channel

T

<t—>

CIT T T [ [ [ Tx
n=TL

1~ 1

=

Y, =Hixy + Wy, k€

o {H,} blockwise IID, Hy ~ N¢(0, Iar, xa1,)  (Rayleigh fading)

{Wi}~ 11D Ne (0, Ias,)

M; transmit antennas, M, receive antennas

T: coherence interval

L: number of time-frequency branches

12742
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No a priori CSI - noncoherent setting

T

<t—>

CIT T T [ [ [
n=1TL

I~
|

¢ {H;} unknown at transmitter (no CSI@Tx):

» high-mobility scenarios or time-critical applications

» avoid need for feedback link

¢ {H;} unknown at receiver (no CSI@Rx):
» characterizing cost of obtaining CSlI

i

M,

i

Rx

» pilot-aided channel estimation one possible coding scheme
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Maximum coding rate R*(L, T, €, p)

X1, Xy

Per-block power constraint: Maximum error probability:
T max Pr(@K#BK‘BK:bK)ge
> IXgreelP < T, Wj | veEOLS
=1
.pA K
Rate: R = ;7

Maximum coding rate:

largest rate R for which there exists
R*(L, T, e, p) = an encoder and decoder satisfying
the power and error prob. constraints

14742



Quasistatic fading channels (fix L and let 7' — o0)

T

<+

EEEENNEN | EEEENEN
n=1TL

Normal approximation (YDKP14)

log T
R, T €0) = Celp) + 07 (<57 )

- channel dispersion V is zero
= holds irrespective of availability of CSI

= holds irrespective of number of transmit and receive antennas

W. Yang, G. Durisi,T. Koch, Y. Polyanskiy, “Quasi-static multiple-antenna fading channels at finite block-
length,” IEEE Trans. Inf. Theory, Jul. 2014.
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Ergodic fading channels (fix 7" and let L — o)

No normal approximation but nonasymptotic bounds available:
® must be evaluated numerically

® mathematical analysis of R*(L, T, €, p) difficult

coherence interval T (log scale)

168 84 42 24 12 8 6 4
T 7 : T T T
—+— MC upper bound ~"'~*_* Clo)
3 | —— DT lower bound “\'./ _4__—"1
R*(L,T.e, e e
[ °) I 23
© n = TL =168
=]
° p=6dB
5
S My =M, =2
° e=10"°

I
1 2 4 7 14 21 28 42
time-frequency diversity branches L (log scale)

0 1 1 1

G. Durisi, T. Koch, J. Ostman, Y. Polyanskiy, W. Yang, “Short-packet communications over multiple-
antenna Rayleigh-fading channels,” IEEE Trans. Commun., Feb. 2016.
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The high-SNR normal approximation

¢ Single-antenna Rayleigh block-fading channel
® Ergodic case: Fix T and let L — oo
High-SNR normal approximation

R T, 6,0) = Busnule) + 0p(1) — yf L2 @161+ 0, (2L

_ 1 logl'(7T) 1 . Tp
Rystm(p) = (1 ?) log(Tp) T + ?QFI 1, T =1; 1% 1+ Tp
P

(
_ (1—%) [Iog(l—i— To) + 1pr—1b(T—1)}

0p(1): terms that vanish as p — oo, O, (log L/ L) : terms of order log L/ L
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Unitary Space-Time Modulation (USTM)

— Xgyra — LI
° X;= CTT T T [ [ [
— Xy — n=TL

® Xiy..., Xy arellD
* X; =+/TpU; — Uj:isotropically-distributed unitary matrix

Theorem (HMO0O0, ZT02):
When T > M, + M,, the rate Rystm achievable with USTM satisfies

lim {C(p) — Rustm(p)} = 0.

p—r00

B. M. Hochwald and T. L. Marzetta, “Unitary space-time modulation for multiple-antenna communica-
tions in Rayleigh flat fading,” IEEE Transactions on Information Theory, March 2000.
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Features of the proof: Achievability

Dependence testing bound (PPV10)

For every Px. and y(-), there exists an encoder and decoder such that

P, < Pr(i(X% Y") <logy(XH)) 4+ (25 — )sup Pr(i(x*; Y") > logy(x"))

L| L
where i(x%;y%) £ log %
Y
® DT bound with USTM channel inputs
® Output PDF induced by USTM inputs:
yl2

T—1
() e 1T |ly|PUTN(T) Tollyll* 1
_ T—1 14—
Ny A+ TV 1o ) T T

e Perform central-limit-type analysis of i(X%; YZ) = 31, i(X¢; Yo)

19742



Features of the proof: Converse

Weakened meta-converse bound (Verda-Han bound) (PPV10)

For every &(-), the maximum coding rate is upper-bounded by

R*(L, T, e,p) < sup

xL

log £(x%)  log(1 — e — Pr(j(x; Y2) > log &(x1)) |
LT LT J

fyL|xL (}’L|XL)

where j(x%:y%) £ log D)

and gy: is an auxiliary pdf.
® Auxiliary pdf gyr: choose pdffég) induced by USTM inputs
e Perform central-limit-type analysis of j(x%; YX) = Y1, j(x¢; Yo)

e Optimize over x*
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Numerical

results: L — R*(L, T, €, p)

p=25dB

Rygram(p)

bits/channel use
o

noncoherent normal approximation

|
10
number L of coherence intervals (log scale)
T=20,p={15dB,25dB}, M; = M, =1,e =103
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Numerical results: LT fixed

number L of coherence intervals (log scale)

10 5 3 1
T T T T T

250 100
T T

[
%}
=)
o 4 =
c
c
©
<
S -
3 —
= MC bound & DT bound
Q0
2+
quasistatic approximation
R
l N I l N I l
2 10 100 500

coherence interval T (log scale)

LT =500,p=25dB, M; = M, =1,e =103
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Numerical results: € — R*(L, T, €, p)

6
o L LU DL L
2] 1T T 1T T T T 1 T T T RCU, bound
o 2 1 1 O I O <
o | T T Tt
O O A N B R P g ¥
F=S I O g ™ P
_CS “““““““ MC bound
% | T e oncoherent normal approximation
= | T e
35
DT bound
S A 1 1 S A A I R
108 1077 107° 107° 1074

probability of error (log scale)

L=25T=20p=25dB M, =M, =1
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Framed ALOHA protocol revisited (1)

1 ..
-
node 1 bv\\\~u
A Fase

,/ Station node 3
/

® d =12 devices, each sending k = 256 bits to base station
e n = LT =480 channel uses divided into s slots of ng = n/s channel uses
® cach device picks randomly a slot to send its packet

» if > 2 devices pick the same slot, then all packets are lost

» if only one device picks a slot, then packet is lost with probability

ns Ce(p) — k

e"(k,ms, p) ~ Q( e Vilo)
s VL

) , e {AWGN, block-fading}
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Framed ALOHA protocol revisited (2)

(@)
nor]e 1 >
<.

/ Base
/ Station node 3

optimal number of slots s

noncoherent coherent classic
block-fading | block-fading | 4'NeN | ALOHA
channel channel protocol
5 s=4 s=6 s=28 s=12
p=15dB
20 s=6 s=6 s=8 s =12
5 s=28 s =12 s =12 s =12
p =25dB
20 s=28 s=28 s =12 s =12

- less favorable channel < fewer slots (larger blocklength per slot)
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Discussion: High-SNR normal approximation

v Available in closed-form
v Accurate for SNR > 15 dB, L > 10, and moderate €
» useful performance benchmark

» can be used to analyze the performance of communication protocols

X Inaccurate for SNR < 15 dB, L < 10, and small €

URLLC
® Total latency less than 1ms
» low-latency + limited bandwidth = short packets

® Lessthan 1 packet loss in 10° packets

» requires power forward error correction (channel coding)
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Saddlepoint approximation

Ziy..., Zy: sequence of i.i.d., zero-mean, random variables with pdf fz

* moment generating function: m(g) = E[e%%]

® cumulant generating function: P () = log m({)

1 n
Pr ( Z Ty > y)
n
=1

00 T+ico
:J ”J P (O-C2) gl

2mi

Y T—ioco
T+ioco
- lj 1 mw@-enge
27 T—ico 71C
1

T+ioco 1 1
~ J L 0 (1 e+ 30 () (c-)

T—ioco C
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inv. Laplace transform
solve integral over z
Taylor series of Y(+)

choose tst.P/'(1) =y

solve integral over



Saddlepoint approximation

Ziy..., Zy: sequence of i.i.d., zero-mean, random variables with pdf fz

* moment generating function: m(g) = E[e%%]

® cumulant generating function: P () = log m({)

1 n
Pr ( Z Ty > y)
n
=1

00 T+ioco
:J ”J (- g7 g

2mi

Y T—ioco
T+ioco
- lj 1 mw@-enge
27 T—ico 71C
1

T+ico 1
~ J L on(m (1) () + 30 (1) ()

T—ioco C
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inv. Laplace transform
solve integral over z
Taylor series of Y(+)

choose Ts.t. /(1) =y

solve integral over



Saddlepoint expansion

Ziy ..., Zy: sequence of i.i.d., zero-mean, random variables
* moment generating function: m(() = E[e%%]

e cumulant generating function: P () = log m(()

® characteristic function: ¢(¢) = E[e'%]

Zy is lattice if it is supported on b, b & h, b+ 2h,. .. (for some b and h)
= 7, is nonlattice if it is not lattice

= 7, is nonlattice iff [ ()| < 1 for every { #0

Saddlepoint expansion (Daniels'54, Feller'71, Jensen'95,...)

Let Zy,..., Z, bei.i.d. nonlattice random variables of positive variance.
Assume that m({) < oo on an open interval around { = 0. Then

( Zmy) v [ () et o o ()]
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Saddlepoint expansions of bounds on R*(L, T, €, p)

Weakened meta-converse bound (PPV10)

L log(1—e—Pr (Y ¢ j(xe;Ye) > log &(xE)
R*(L, T, ¢, p) ésuLp{Iogfg = ( : 2T — )

® Zy < j(xe; Yo)
* v« log&(xh)

However:

® j(x¢;Y,) depends on system parameters such as
» SNR

» number of transmit and receive antennas

> e
® We wish the error terms O(1/y/n) to be uniform in these parameters
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Families of distributions

21,0y -y Zn,0: sequence of i.i.d., zero-mean, random variables
® depends on parameter 6 € ©

* m(C) — me(C), W(C) = be(C), @(C) = @o(C)

Family of random variables Z; ¢ is nonlattice if

sup |pe(Q)l <1, forevery (#0
0cO

We assume that (for some ¢y > 0)
° sup mé‘”(é) < o0
0€0,|C|< o

. inf 7)) >0
ee®,m<co%(o
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Saddlepoint expansion for families of distributions

Saddlepoint expansion for families of distributions
Let Z1,0,..., Zn,0 be afamily of i.i.d. nonlattice random variables. Then

£ Ke (T, 77,) 1
Pr Z Zyo = y) = "We (1) b (7)] [‘{’9(1 n) + +o (—)}
(zl vn v

where

Yo(t,n) = ( )

i) ( 1 enpy(n)

Colom) =Gy \ " var T Ve

and T is the solution to np}(t) =.

BP0 W, nJ)

o(1/+/n): term that is uniform in T and © and vanishes faster than 1//n
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Features of the proof

o Fzn: distribution of Y, (Ze,0 —v/n)

Vo .: tilted distribution

An Infroduction to

*n (l‘) — e*"\l’e (t)+Ty J eTtdFén(ﬂ
—00

Probability Theory o
and lts Applications

* Tail distribution of }_;_, Ze:

n 0
o [T
Pr (Z Zyo > Y) = ¢e"bol ”J e ™Ao" ()
=1 0
Wilicm Feller ® Perform expansion of 93", around zero-mean

Gaussian distribution with variance n{ (t)
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Upper bound on minimum error probability

Minimum error probability ¢*(L, T, R, p): smallest error probability P,
for which there exists a channel code of blocklength n and rate R

RCU; bound (MGiF11)

For every s > 0, there exists an encoder and decoder such that

L
6*([/, T) R) p) < Pr (Z(IS(P) - Z'z,s(Xe;Ye)) P Lls(p) + |0g U— LTR)
=1

where
Frox, (Yelxe)®

| ~rox, (yel%)*d Px, (%)
I(p) £ Elég,s(Xe; Yo)l, and U ~ U([0,1]).

i,s(X0;y0) £ log

= for s =1, RCU, bound = DT bound
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Lower bound on minimum error probability

Weakened meta-converse bound (Verdi-Han bound) (PPV10)

Forevery & > 0and s >0,

=1
_ elog §E—LTR

L
€ (L, T, R,p) > Pr (Z(Js(p) — jo,s(Xe; Ye)) = s(LJy(p) — log E))

where

er X, (yelxe)
ay, (ye)

1 1/s
v 2 (wa x, (vl d Py, (i))

Je,s(Xe; ye) = log

and Js(p) = EU@,S[XE;YK)]-
= meta-converse bound with auxiliary distribution gy,
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Saddlepoint expansions of RCU, and MC bounds

Slightly more restrictive per-block power constraint:

T
D IXjriel*<To, Vi
=1

Apply saddlepoint expansion with
* 0= (p» S)

* my (1) A EI:eT[Is(p)_i@‘s(XUY@)]:I

b 1l’p,s(’r) £ log mp,s(T)
For meta-converse bound, use that
) 1,
Jo,s(xe;ye) = log p(s) + ;Zz,s(xuw)
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Numerical results: Notation

¢ Saddlepoint approximations:
“saddlepoint MC" and “saddlepoint RCU,"

* Normal approximation “NA":

* ~ C(p) o L —1
R (L) Taeyp)"‘ T LT2Q (6)
C(p) = Elig,1(Xe; Ye)l, V = Varlig,1 (Xe; Yo))

* Error-exponent approximation “EE":

Solve €*(L, T,R,p) = ¢ X¥on/asoVYesaval for g

where Tis such that <Il/(1+T)(p) — 11’;),1/(1“)) =R
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Numerical results: LT fixed

Number L of coherence intervals (log scale)

7 4 3 2

84 56 42 28 21 14
T

0.4

bits/channel use

0.2

nonasymptotic MC
® nonasymptotic RCUs

saddlepoint MC

-

saddlepoint RCU,

0 [ T I
2 3 4 6 8 12

24 42 56 84

coherence interval T (log scale)

LT =168, p=6dB, e =10"°% My =M, =1
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Numerical results: € — R*(L, T, €, p)

nonasymptotic MC
® nonasymptotic RCUg

1.2 |-

saddlepoint RCU,
0.8 saddlepoint MC

0.6

bits/channel use

0.4

02—
______ R, (0)
Lol Ll Ll Ll Ll Ll Lol Ll Ll
10710 107° 1078 1077 107¢ 107° 1074 1073 1072

probability of error (log scale)
L=14,T=12,p=6dB, My = M, =1
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Numerical results: p — e¢*(L, T, €, p)

R _high-SNR-NA
107 P e T
o102 AT T~ e TN
0 IS i, i N ~o.
@ T e T e T
5 T TN
>, 108 saddlepointRCUs e N
£ ; / ............
@© B . e EE
S 1074 | saddlepointMC AN/ N\
& g 0 e T T T T S 0 T M, A s
- NA
1077 A
- | ®nonasymptotic RCUs
B nonasymptotic MC
1076 | | | | | | | |
0 1 2 3 4 5 6 7 8

SNR p (dB)
L=7T=24R=048 My =M, =1
J. Ostman et al., “Short packets over block-memoryless fading channels: Pilot-assisted or noncoherent

transmission?” [EEE Trans. Commun., Feb. 2019.
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Discussion: Saddlepoint approximations

Saddlepoint approximations versus nonasymptotic bounds
- Complexity:
» Saddlepoint approx.: compute L(p), Py, s, P! " m

Py8! W P,8! ¥,
» Nonasymp. bound: compute I,(p) and Pr (Zle i0,s(Xe; Ye) > y)
= Accuracy:

» Saddlepoint approx. are indistinguishable from nonasymp. bounds

Saddlepoint approx. are easy-to-compute alternatives to nonasymp. bounds

Saddlepoint approximations versus other asymptotics expansions

= Normal approx.: go-to choice for suff. large SNR and error probabilities
» Forexample: p=6dBand e > 103

- Error exponents: go-to choice for suff. small SNR and error probabilities
» Forexample: p=6dBand e <1077

- Saddlepoint approx.: accurate over entire range of system parameters
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Saddlepoint approximations for non-i.i.d. codebooks

e Standard saddlepoint approximation applies to sum of i.i.d. RVs

° jl,s(Xl; Yl)) e )jL,s(XL; YL) are only ii.d.if Xl, N ,XL are
(we sidestepped this issue by changing the power constraint)

® Saddlepoint approx. can be generalized to independent RVs:
= moment generating function: my, () = E %0

= cumulant generating function: Py,o(C) = log my,e(C)
_ 1 &

2> PnelQ) = - Zﬂ)k‘e((:)
k=1

= replace in saddlepoint approximation Vg (1) by J)n,e(’t)
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Information Theory for

Low-Latency Wireless Communications

High-SNR normal approximation  Saddlepoint approximation

v Available in closed-form X Must be computed numerically

v Accurate for SNR > 15 dB, v Computational cost low and
L > 10, and moderate € independent of L

X Inaccurate for SNR < 15 dB, v Very accurate over entire range
L <10, and small e of system parameters

- useful performance benchmark - easy-to-compute alternative to
(where accurate) nonasymptotic bounds

- proxy for R*(L, T, €, p) - starting point for more refined

approximations



