
State-Dependent DMC with a Causal Helper

Ligong Wang

Joint work with Amos Lapidoth

Information Theory and Tapas Workshop

Madrid, 27 Jan. 2023



State-dependent DMC

I Input, output, and state alphabets are X , Y, and S

I State sequence is IID according to PS

I Given input X = x and state S = s, output equals y with probability

W (y|x, s)

Capacity depends on whether or not channel-state information (CSI) is
available, to whom, and how.

2 / 31



Causal CSI: Shannon’s classic result

At time i, encoder knows si, so time-i input is produced via

xi = fi(m, s
i)

where m denotes the message.

Theorem [Shannon ’58]

Capacity with causal CSI at Transmitter is the maximum of

I(U ;Y )

over joint distributions of the form

PS(s)PU (u)PX|US(x|u, s)W (y|x, s).

Without loss of optimality, x can be chosen as a deterministic function of (u, s).

3 / 31



Causal CSI: Shannon’s classic result

At time i, encoder knows si, so time-i input is produced via

xi = fi(m, s
i)

where m denotes the message.

Theorem [Shannon ’58]

Capacity with causal CSI at Transmitter is the maximum of

I(U ;Y )

over joint distributions of the form

PS(s)PU (u)PX|US(x|u, s)W (y|x, s).

Without loss of optimality, x can be chosen as a deterministic function of (u, s).

3 / 31



How this capacity is achieved

I u is a mapping (or “strategy”) that maps s to x

I Capacity is that of the “super channel” with input u and output y

I Notice that, at time i, the optimal encoder only uses si and ignores si−1:

xi = fi(m, si).

Related to the above: strictly causal CSI, where

xi = fi(m, s
i−1),

does not increase capacity.

4 / 31



How this capacity is achieved

I u is a mapping (or “strategy”) that maps s to x

I Capacity is that of the “super channel” with input u and output y

I Notice that, at time i, the optimal encoder only uses si and ignores si−1:

xi = fi(m, si).

Related to the above: strictly causal CSI, where

xi = fi(m, s
i−1),

does not increase capacity.

4 / 31



This work: Imperfect causal CSI via Helper

At time i:

I Helper observes si and produces ti ∈ T :

ti = hi(s
i)

(No additional constraint on Helper except that T is fixed, with |T | < |S|)

I Transmitter sees ti and produces input

xi = fi(m, t
i)

Main question: Is it optimal to choose ti = hi(si) and xi = fi(m, ti)?

We shall also consider some variants of the above setting.

5 / 31



This work: Imperfect causal CSI via Helper

At time i:

I Helper observes si and produces ti ∈ T :

ti = hi(s
i)

(No additional constraint on Helper except that T is fixed, with |T | < |S|)

I Transmitter sees ti and produces input

xi = fi(m, t
i)

Main question: Is it optimal to choose ti = hi(si) and xi = fi(m, ti)?

We shall also consider some variants of the above setting.

5 / 31



This work: Imperfect causal CSI via Helper

At time i:

I Helper observes si and produces ti ∈ T :

ti = hi(s
i)

(No additional constraint on Helper except that T is fixed, with |T | < |S|)

I Transmitter sees ti and produces input

xi = fi(m, t
i)

Main question: Is it optimal to choose ti = hi(si) and xi = fi(m, ti)?

We shall also consider some variants of the above setting.

5 / 31



Some related works

I Rosenzweig, Steinberg, and Shamai ’05:

Full CSI at Receiver and quantized CSI at Transmitter

(In the causal case, ti = hi(si) is assumed as part of the setup)

I Steinberg ’08: Full CSI at Transmitter and quantized CSI at Receiver

I Bross, Lapidoth, and Marti ’20 (two papers):

Additive-noise channels with quantized CSI at Transmitter or at Receiver

6 / 31



Scalar-quantization lower bound

I Helper: ti = g(si)

I Encoder: Shannon strategies treating t as the effective state: xi = ui(ti).

This achieves rate
I(U ;Y )

with joint distribution

PS(s)PU (u)PT |S(t|s)PX|UT (x|u, t)W (y|x, s)

which satisfies three conditions:

(U, T )(−−(X,S)(−−Y
S(−−(U, T )(−−X

U ⊥⊥ (S, T ).

(It’s optimal to choose both PT |S and PX|UT to be deterministic.)

7 / 31



An upper bound

Define for every i
Ui , (M,T i−1, Y i−1).

Then

n(R− ε) ≤ I(M ;Y n)

=

n∑
i=1

I(M ;Yi|Y i−1)

≤
n∑
i=1

I(M,Y i−1;Yi)

≤
n∑
i=1

I(Ui;Yi).

8 / 31



Let’s check the conditions

Recall Ui , (M,T i−1, Y i−1).

(Ui, Ti) = (M,T i, Y i−1)(−−(Xi, Si)(−−Yi

Si(−−(M,T i, Y i−1)(−−Xi

Ui = (M,T i−1, Y i−1)��HH⊥⊥ (Si, Ti)

For example, both T and S binary, Ti−1 = Si−1 and Ti = Si ⊕ Si−1

We only have
Ui ⊥⊥ Si

i.e., joint distribution looks like

PS(s)PU (u)PT |US(t|u, s)PX|UT (x|u, t)W (y|x, s)

9 / 31



Let’s check the conditions

Recall Ui , (M,T i−1, Y i−1).

(Ui, Ti) = (M,T i, Y i−1)(−−(Xi, Si)(−−Yi
Si(−−(M,T i, Y i−1)(−−Xi

Ui = (M,T i−1, Y i−1)��HH⊥⊥ (Si, Ti)

For example, both T and S binary, Ti−1 = Si−1 and Ti = Si ⊕ Si−1

We only have
Ui ⊥⊥ Si

i.e., joint distribution looks like

PS(s)PU (u)PT |US(t|u, s)PX|UT (x|u, t)W (y|x, s)

9 / 31



Let’s check the conditions

Recall Ui , (M,T i−1, Y i−1).

(Ui, Ti) = (M,T i, Y i−1)(−−(Xi, Si)(−−Yi
Si(−−(M,T i, Y i−1)(−−Xi

Ui = (M,T i−1, Y i−1)��HH⊥⊥ (Si, Ti)

For example, both T and S binary, Ti−1 = Si−1 and Ti = Si ⊕ Si−1

We only have
Ui ⊥⊥ Si

i.e., joint distribution looks like

PS(s)PU (u)PT |US(t|u, s)PX|UT (x|u, t)W (y|x, s)

9 / 31



Let’s check the conditions

Recall Ui , (M,T i−1, Y i−1).

(Ui, Ti) = (M,T i, Y i−1)(−−(Xi, Si)(−−Yi
Si(−−(M,T i, Y i−1)(−−Xi

Ui = (M,T i−1, Y i−1)��HH⊥⊥ (Si, Ti)

For example, both T and S binary, Ti−1 = Si−1 and Ti = Si ⊕ Si−1

We only have
Ui ⊥⊥ Si

i.e., joint distribution looks like

PS(s)PU (u)PT |US(t|u, s)PX|UT (x|u, t)W (y|x, s)

9 / 31



Why the gap?

I Can we prove a tighter upper bound?

I Could it be that max I(U ;Y ) over the two types of joint distributions is in
fact the same?

I.e. once you optimize, “maybe” you actually want U ⊥⊥ T?

The example Ti−1 = Si−1 and Ti = Si⊕Si−1 was obviously a silly scheme.

I If neither works, then we need to think about a better lower bound, but

Why on earth would Helper want to tell Transmitter

anything about Si−1 at time i?

10 / 31



Why the gap?

I Can we prove a tighter upper bound?

I Could it be that max I(U ;Y ) over the two types of joint distributions is in
fact the same?

I.e. once you optimize, “maybe” you actually want U ⊥⊥ T?

The example Ti−1 = Si−1 and Ti = Si⊕Si−1 was obviously a silly scheme.

I If neither works, then we need to think about a better lower bound, but

Why on earth would Helper want to tell Transmitter

anything about Si−1 at time i?

10 / 31



Why the gap?

I Can we prove a tighter upper bound?

I Could it be that max I(U ;Y ) over the two types of joint distributions is in
fact the same?

I.e. once you optimize, “maybe” you actually want U ⊥⊥ T?

The example Ti−1 = Si−1 and Ti = Si⊕Si−1 was obviously a silly scheme.

I If neither works, then we need to think about a better lower bound, but

Why on earth would Helper want to tell Transmitter

anything about Si−1 at time i?

10 / 31



A variant (special case): S is part of the output

i.e. CSI is available to Receiver (causality plays no role).

(For clarity, Y denotes the part of output without S.)

Lower bound on capacity becomes

I(U ;Y, S) = I(U ;Y |S) = I(X;Y |S)

for joint distribution

PS(s)PT |S(t|s)PX|T (x|t)W (y|x, s)

where it’s again optimal to choose PT |S to be deterministic.

11 / 31



S known to Receiver: Upper bound
Define

Ui , (M,Y i−1), Vi , Si−1

Then

n(R− ε) ≤ I(M ;Y n, Sn)

=

n∑
i=1

I(M ;Yi, Si|Y i−1, Si−1)

≤
n∑
i=1

I(M,Y i−1;Yi, Si|Si−1)

=

n∑
i=1

I(M,Y i−1;Yi|Si−1, Si)

=

n∑
i=1

I(Ui;Yi|Vi, Si)

12 / 31



S known to Receiver: Upper bound (contd.)

So capacity is upper-bounded by the maximum of

I(U ;Y |V, S)

over distributions of the form

PV (v)PS(s)PU |V (u|v)PT |SV (t|s, v)PX|TUV (x|t, u, v)W (y|x, s)

Observation: V can be removed via maximization over V = v, yielding

I(U ;Y |S) = I(X;Y |S)

over
PS(s)PT |S(t|s)PX|T (x|t)W (y|x, s)

which coincides with lower bound.

13 / 31



S known to Receiver: Upper bound (contd.)

So capacity is upper-bounded by the maximum of

I(U ;Y |V, S)

over distributions of the form

PV (v)PS(s)PU |V (u|v)PT |SV (t|s, v)PX|TUV (x|t, u, v)W (y|x, s)

Observation: V can be removed via maximization over V = v, yielding

I(U ;Y |S) = I(X;Y |S)

over
PS(s)PT |S(t|s)PX|T (x|t)W (y|x, s)

which coincides with lower bound.

13 / 31



S known to Receiver: Result

Theorem

When states are known to the Receiver, capacity is given by

max I(X;Y |S)

where max is over joint distribiutions of the form

PS(s)PT |S(t|s)PX|T (x|t)W (y|x, s).

Note: in this variant it is optimal to choose

ti = h(si), xi = fi(m, ti).

14 / 31



S known to Receiver: Result

Theorem

When states are known to the Receiver, capacity is given by

max I(X;Y |S)

where max is over joint distribiutions of the form

PS(s)PT |S(t|s)PX|T (x|t)W (y|x, s).

Note: in this variant it is optimal to choose

ti = h(si), xi = fi(m, ti).

14 / 31



Another variant: Helper knows message M

That is, at time i, Helper produces

ti = hi(m, s
i)

Our upper bound in the original setting continues to hold in this case:

capacity ≤ max I(U ;Y )

over
PS(s)PU (u)PT |US(t|u, s)PX|UT (x|u, t)W (y|x, s).

15 / 31



Another variant: Helper knows message M

That is, at time i, Helper produces

ti = hi(m, s
i)

Our upper bound in the original setting continues to hold in this case:

capacity ≤ max I(U ;Y )

over
PS(s)PU (u)PT |US(t|u, s)PX|UT (x|u, t)W (y|x, s).

15 / 31



Helper knows M : Achievability

I Codebook: {un(m),m ∈M} all generated IID according to PU .

I Helper knows m and hence also un(m); it generates

ti = h(ui, si)

Now ti does depend on ui!

I Encoder generates
xi = f(ui, ti)

16 / 31



Helper knows M : Result

Theorem

When the message is known to the helper, capacity is given by

max I(U ;Y )

over joint distributions of the form

PS(s)PU (u)PT |US(t|u, s)PX|UT (x|u, t)W (y|x, s).

Again, it is optimal to let ti not depend on si−1!

17 / 31



Helper knows M : Result

Theorem

When the message is known to the helper, capacity is given by

max I(U ;Y )

over joint distributions of the form

PS(s)PU (u)PT |US(t|u, s)PX|UT (x|u, t)W (y|x, s).

Again, it is optimal to let ti not depend on si−1!

17 / 31



Helper knows M : An example

I State contains two independent uniform bits:

S = (S(0), S(1))

I Helper has one bit to use:
T = {0, 1}

I Input contains two bits

X = (A,B), A,B ∈ {0, 1}

I Output is also two bits
Y = (A,B ⊕ S(A))

18 / 31



Helper knows M example: Solution

We can send two information bits (k, `) as follows:

I Help is T = S(k)

I Transmitter sends (k, `⊕ T )

I Output is then (k, `) (no decoding needed)

It is easy to prove that the above is optimal, so

capacity = 2 bits.

(We can also use the capacity formula to get this.)

19 / 31



Same example when Helper does not know M

First consider scalar quantizer (independent of M).

For an upper bound, reveal T to Receiver.

Given T = t, we have a “sum channel”:

I Channel 1: X = (0, B), Y = (0, B ⊕ S(0)); capacity is 1−H(S(0)|T = t)

I Channel 2: X = (1, B), Y = (1, B ⊕ S(1)); capacity is 1−H(S(1)|T = t)

Capacity of the sum channel is given by

log
(
21−H(S(0)|T=t) + 21−H(S(1)|T=t)

)

20 / 31



Same example when Helper does not know M

First consider scalar quantizer (independent of M).

For an upper bound, reveal T to Receiver.

Given T = t, we have a “sum channel”:

I Channel 1: X = (0, B), Y = (0, B ⊕ S(0)); capacity is 1−H(S(0)|T = t)

I Channel 2: X = (1, B), Y = (1, B ⊕ S(1)); capacity is 1−H(S(1)|T = t)

Capacity of the sum channel is given by

log
(
21−H(S(0)|T=t) + 21−H(S(1)|T=t)

)

20 / 31



Same example when Helper does not know M

First consider scalar quantizer (independent of M).

For an upper bound, reveal T to Receiver.

Given T = t, we have a “sum channel”:

I Channel 1: X = (0, B), Y = (0, B ⊕ S(0)); capacity is 1−H(S(0)|T = t)

I Channel 2: X = (1, B), Y = (1, B ⊕ S(1)); capacity is 1−H(S(1)|T = t)

Capacity of the sum channel is given by

log
(
21−H(S(0)|T=t) + 21−H(S(1)|T=t)

)

20 / 31



Same example when Helper does not know M (contd.)

log
(
21−H(S(0)|T=t) + 21−H(S(1)|T=t)

)
≤ log

(
2−H(S(0)|T = t) + 2−H(S(1)|T = t)

)
≤ log

(
4−H(S(0), S(1)|T = t)

)
Averaging over T and noting that log is concave, we have that capacity—with
a scalar-quantization Helper who doesn’t know M—is at most

log
(
4−H(S(0), S(1)|T )

)
≤ log 3

(This bound is tight: It can be achieved when Helper always sends T = S(0)).

21 / 31



Example when Helper is non-scalar (does not know M)
Allow Helper to be noncausal, and provide T to both transmitter and receiver.

First consider t = h(s1, s2). Given T = t, capacity of the “sum channel” is

log

(
2
2−H(S

(0)
1 ,S

(0)
2 |T=t)

+ 2
2−H(S

(0)
1 ,S

(1)
2 |T=t)

+ 2
2−H(S

(1)
1 ,S

(0)
2 |T=t)

+ 2
2−H(S

(1)
1 ,S

(1)
2 |T=t)

)
= log

(
2
1−H(S

(0)
1 |T=t) · 21−H(S

(0)
2 |S(0)

1 ,T=t)
+ 2

1−H(S
(0)
1 |T=t) · 21−H(S

(1)
2 |S(0)

1 ,T=t)

+ 2
1−H(S

(1)
1 |T=t) · 21−H(S

(0)
2 |S(1)

1 ,T=t)
+ 2

1−H(S
(1)
1 |T=t) · 21−H(S

(1)
2 |S(1)

1 ,T=t)

)
≤ log

(
2
1−H(S

(0)
1 |T=t) · 21−H(S

(0)
2 |S(0)

1 ,S
(1)
1 ,T=t)

+ 2
1−H(S

(0)
1 |T=t) · 21−H(S

(1)
2 |S(0)

1 ,S
(1)
1 ,T=t)

+ 2
1−H(S

(1)
1 |T=t) · 21−H(S

(0)
2 |S(0)

1 ,S
(1)
1 ,T=t)

+ 2
1−H(S

(1)
1 |T=t) · 21−H(S

(1)
2 |S(0)

1 ,S
(1)
1 ,T=t)

)
= log

(
2
1−H(S

(0)
1 |T=t)

+ 2
1−H(S

(1)
1 |T=t)

)
+ log

(
2
1−H(S

(0)
2 |S1,T=t)

+ 2
1−H(S

(1)
2 |S1,T=t)

)
≤ log (4−H(S1|T = t)) + log (4−H(S2|S1, T = t)) ≤ 2 log

(
4−

1

2
H(S1, S2|T = t)

)

Averaging over T we again get log 3 per channel use.

The proof can be generalized to t = h(sn) for any finite n.

22 / 31



Example: Summary

Theorem

In the above example, when Helper knows the message,

capacity = 2 bits.

When Helper does not know the message,

capacity = log 3.

Both equations hold irrespectively of whether Helper is causal or noncausal.
Furthermore, they hold irrespectively of whether or not the help is also given to
the Receiver.

We have learned from this example:

1. Helper knowing the message M can indeed make a difference.

2. There is indeed a gap between our lower and upper bounds in the original
setting (where Helper does not know M).

23 / 31



Example: Summary

Theorem

In the above example, when Helper knows the message,

capacity = 2 bits.

When Helper does not know the message,

capacity = log 3.

Both equations hold irrespectively of whether Helper is causal or noncausal.
Furthermore, they hold irrespectively of whether or not the help is also given to
the Receiver.

We have learned from this example:

1. Helper knowing the message M can indeed make a difference.

2. There is indeed a gap between our lower and upper bounds in the original
setting (where Helper does not know M).

23 / 31



Let’s go back to the original problem

Recall our upper bound was

1

n

n∑
i=1

I(Ui;Yi)

with Ui , (M,T i−1, Y i−1). The “problem” was (unlike in the lower bound)

Ui��HH⊥⊥ (Si, Ti)

Roughly speaking, possible dependence between Ui and Ti comes via T i−1.

We want to find a situation where it is useful to convey T i−1 to the Receiver.

24 / 31



Let’s go back to the original problem

Recall our upper bound was

1

n

n∑
i=1

I(Ui;Yi)

with Ui , (M,T i−1, Y i−1). The “problem” was (unlike in the lower bound)

Ui��HH⊥⊥ (Si, Ti)

Roughly speaking, possible dependence between Ui and Ti comes via T i−1.

We want to find a situation where it is useful to convey T i−1 to the Receiver.

24 / 31



Let’s go back to the original problem

Recall our upper bound was

1

n

n∑
i=1

I(Ui;Yi)

with Ui , (M,T i−1, Y i−1). The “problem” was (unlike in the lower bound)

Ui��HH⊥⊥ (Si, Ti)

Roughly speaking, possible dependence between Ui and Ti comes via T i−1.

We want to find a situation where it is useful to convey T i−1 to the Receiver.

24 / 31



WARNING

The following example may cause headache to

some audiences.



Example where scalar-quantization Helper is suboptimal
I State is two uniform bits as in previous example: S = (S(0), S(1))

I Input has three parts: X = (A,B,C)

where A and B are binary, while |C| = 2η

I Output also has three parts: Y = (A′, D(0), D(1))

where A′ is binary, while D(0) and D(1) each contains η bits

I Helper has one bit: T = {0, 1}

Channel law is:

I If B 6= S(A), then Y ⊥⊥ (X,S) and uniform over its alphabet

I If B = S(A), then

A′ = A, D(B) = C, D(B⊕1) ⊥⊥ X.

You really want B to equal S(A)...

26 / 31



Example where scalar-quantization Helper is suboptimal
I State is two uniform bits as in previous example: S = (S(0), S(1))

I Input has three parts: X = (A,B,C)

where A and B are binary, while |C| = 2η

I Output also has three parts: Y = (A′, D(0), D(1))

where A′ is binary, while D(0) and D(1) each contains η bits

I Helper has one bit: T = {0, 1}

Channel law is:

I If B 6= S(A), then Y ⊥⊥ (X,S) and uniform over its alphabet

I If B = S(A), then

A′ = A, D(B) = C, D(B⊕1) ⊥⊥ X.

You really want B to equal S(A)...

26 / 31



Example where scalar-quantization Helper is suboptimal
I State is two uniform bits as in previous example: S = (S(0), S(1))

I Input has three parts: X = (A,B,C)

where A and B are binary, while |C| = 2η

I Output also has three parts: Y = (A′, D(0), D(1))

where A′ is binary, while D(0) and D(1) each contains η bits

I Helper has one bit: T = {0, 1}

Channel law is:

I If B 6= S(A), then Y ⊥⊥ (X,S) and uniform over its alphabet

I If B = S(A), then

A′ = A, D(B) = C, D(B⊕1) ⊥⊥ X.

You really want B to equal S(A)...
26 / 31



Coding scheme for this example with non-scalar quantizer

Channel law:

I If B 6= S(A), then Y ⊥⊥ (X,S)

I If B = S(A), then A′ = A, D(B) = C, D(B⊕1) ⊥⊥ X.

Let T0 , 0. At time i,

Ti= S
(Ti−1)
i

Ai= Ti−1

Bi= Ti

Ci carries η information bits

How this scheme works:

I Always guaranteed that B = S(A)

I At time i, Receiver learns Bi−1, so it can recover Ci−1 from D
(Bi−1)
i

=⇒ we achieve η bits per channel use

27 / 31



Coding scheme for this example with non-scalar quantizer

Channel law:

I If B 6= S(A), then Y ⊥⊥ (X,S)

I If B = S(A), then A′ = A, D(B) = C, D(B⊕1) ⊥⊥ X.

Let T0 , 0. At time i,

Ti= S
(Ti−1)
i

Ai= Ti−1

Bi= Ti

Ci carries η information bits

How this scheme works:

I Always guaranteed that B = S(A)

I At time i, Receiver learns Bi−1, so it can recover Ci−1 from D
(Bi−1)
i

=⇒ we achieve η bits per channel use

27 / 31



Example: Scalar-quantization Helper is always worse

Channel law:

I If B 6= S(A), then Y ⊥⊥ (X,S)

I If B = S(A), then A′ = A, D(B) = C, D(B⊕1) ⊥⊥ X.

First consider Ti = S
(0)
i .

I We must avoid B 6= S(A), so we must always choose A = 0 and B = T .

I D(0) or D(1) equals C, but Receiver does not know which one.

For large η, the achieved rate ≈ η − 1 bits.

Other scalar quantizers are even worse. We can list all possible scalar quantizers
and upper-bound the rate that is achievable with each quantizer. Proof omitted.

28 / 31



Example: Scalar-quantization Helper is always worse

Channel law:

I If B 6= S(A), then Y ⊥⊥ (X,S)

I If B = S(A), then A′ = A, D(B) = C, D(B⊕1) ⊥⊥ X.

First consider Ti = S
(0)
i .

I We must avoid B 6= S(A), so we must always choose A = 0 and B = T .

I D(0) or D(1) equals C, but Receiver does not know which one.

For large η, the achieved rate ≈ η − 1 bits.

Other scalar quantizers are even worse. We can list all possible scalar quantizers
and upper-bound the rate that is achievable with each quantizer. Proof omitted.

28 / 31



Some reflections

I Why on earth would Helper want to tell Transmitter anything about Si−1

at time i?

Perhaps it doesn’t want to tell Transmitter anything “about” Si−1.

But WHICH PART of Si to convey can depend on Si−1.

I In fact, giving Si−1 to Transmitter doesn’t change anything!

I In the example, Ti wants to depend on Si−1 because Transmitter wants to
tell Receiver something about Si−1,

which is why scalar quantization is optimal when Receiver knows Sn!

I This can be generalized to a block-Markov scheme; details omitted.

29 / 31



Some reflections

I Why on earth would Helper want to tell Transmitter anything about Si−1

at time i?

Perhaps it doesn’t want to tell Transmitter anything “about” Si−1.

But WHICH PART of Si to convey can depend on Si−1.

I In fact, giving Si−1 to Transmitter doesn’t change anything!

I In the example, Ti wants to depend on Si−1 because Transmitter wants to
tell Receiver something about Si−1,

which is why scalar quantization is optimal when Receiver knows Sn!

I This can be generalized to a block-Markov scheme; details omitted.

29 / 31



Some reflections

I Why on earth would Helper want to tell Transmitter anything about Si−1

at time i?

Perhaps it doesn’t want to tell Transmitter anything “about” Si−1.

But WHICH PART of Si to convey can depend on Si−1.

I In fact, giving Si−1 to Transmitter doesn’t change anything!

I In the example, Ti wants to depend on Si−1 because Transmitter wants to
tell Receiver something about Si−1,

which is why scalar quantization is optimal when Receiver knows Sn!

I This can be generalized to a block-Markov scheme; details omitted.

29 / 31



Some reflections

I Why on earth would Helper want to tell Transmitter anything about Si−1

at time i?

Perhaps it doesn’t want to tell Transmitter anything “about” Si−1.

But WHICH PART of Si to convey can depend on Si−1.

I In fact, giving Si−1 to Transmitter doesn’t change anything!

I In the example, Ti wants to depend on Si−1 because Transmitter wants to
tell Receiver something about Si−1,

which is why scalar quantization is optimal when Receiver knows Sn!

I This can be generalized to a block-Markov scheme; details omitted.

29 / 31



Some reflections

I Why on earth would Helper want to tell Transmitter anything about Si−1

at time i?

Perhaps it doesn’t want to tell Transmitter anything “about” Si−1.

But WHICH PART of Si to convey can depend on Si−1.

I In fact, giving Si−1 to Transmitter doesn’t change anything!

I In the example, Ti wants to depend on Si−1 because Transmitter wants to
tell Receiver something about Si−1,

which is why scalar quantization is optimal when Receiver knows Sn!

I This can be generalized to a block-Markov scheme; details omitted.

29 / 31



Some reflections

I Why on earth would Helper want to tell Transmitter anything about Si−1

at time i?

Perhaps it doesn’t want to tell Transmitter anything “about” Si−1.

But WHICH PART of Si to convey can depend on Si−1.

I In fact, giving Si−1 to Transmitter doesn’t change anything!

I In the example, Ti wants to depend on Si−1 because Transmitter wants to
tell Receiver something about Si−1,

which is why scalar quantization is optimal when Receiver knows Sn!

I This can be generalized to a block-Markov scheme; details omitted.

29 / 31



Summary

I Main finding: for a DMC with a memoryless state sequence,

scalar-quantization Helper + Shannon strategy at Transmitter

need not be optimal

I They become optimal if states are revealed to Receiver

I If Helper knows the message, then (message-dependent) scalar quantizer is
optimal

I Helper knowing the message increases capacity

30 / 31



Summary

I Main finding: for a DMC with a memoryless state sequence,

scalar-quantization Helper + Shannon strategy at Transmitter

need not be optimal

I They become optimal if states are revealed to Receiver

I If Helper knows the message, then (message-dependent) scalar quantizer is
optimal

I Helper knowing the message increases capacity

30 / 31



Summary

I Main finding: for a DMC with a memoryless state sequence,

scalar-quantization Helper + Shannon strategy at Transmitter

need not be optimal

I They become optimal if states are revealed to Receiver

I If Helper knows the message, then (message-dependent) scalar quantizer is
optimal

I Helper knowing the message increases capacity

30 / 31



Summary

I Main finding: for a DMC with a memoryless state sequence,

scalar-quantization Helper + Shannon strategy at Transmitter

need not be optimal

I They become optimal if states are revealed to Receiver

I If Helper knows the message, then (message-dependent) scalar quantizer is
optimal

I Helper knowing the message increases capacity

30 / 31



Thank you!


