Variations on Common Information

Robert Graczyk

January 25, 2023

Wyner's Common Information

Definition 1 (Wyner 1975)

The common information $\mathrm{C}_{1}(X ; Y)$ between X and Y is the least common rate R_{0} under which almost-lossless compression of $\left(X^{n}, Y^{n}\right)$ is possible subject to the no-excess-rate constraint

$$
R_{0}+R_{1}+R_{2}=\mathrm{H}(X, Y)
$$

Wyner's Common Information

Definition 2 (Wyner 1975)

The common information $\mathrm{C}_{2}(X ; Y)$ between X and Y is the least common rate R_{W} under which simulation of $\left(X^{n}, Y^{n}\right)$ is possible in the sense that

$$
\frac{1}{n} \mathscr{D}\left(P_{X^{n} Y^{n}} \| P_{X Y}^{n}\right) \rightarrow 0
$$

Wyner's Common Information

Theorem (Wyner 1975)

$$
\begin{gathered}
\mathrm{C}_{1}(X ; Y)=\mathrm{C}_{2}(X ; Y)=\mathrm{C}_{\mathrm{W}}(X ; Y) \\
\text { where } \\
\mathrm{C}_{\mathrm{W}}(X ; Y) \triangleq \min _{\substack{P_{W \mid X Y}: \\
X \rightarrow W \rightarrow Y}} \mathrm{I}(W ; X, Y)
\end{gathered}
$$

Variation 1

Recall the Rényi entropy of $X \sim P_{X}$

$$
\mathrm{H}_{\alpha}(X)=\frac{1}{1-\alpha} \log \left(\sum_{x} P_{X}(x)^{\alpha}\right), \quad \alpha \in \mathbb{R} \backslash\{1\}
$$

Variation 1

Recall the Rényi entropy of $X \sim P_{X}$

$$
\mathrm{H}_{\alpha}(X)=\frac{1}{1-\alpha} \log \left(\sum_{x} P_{X}(x)^{\alpha}\right), \quad \alpha \in \mathbb{R} \backslash\{1\}
$$

The Rényi entropy generalizes Shannon's

$$
\mathrm{H}(X)=\lim _{\alpha \rightarrow 1} \mathrm{H}_{\alpha}(X)
$$

Variation 1

Recall the Rényi entropy of $X \sim P_{X}$

$$
\mathrm{H}_{\alpha}(X)=\frac{1}{1-\alpha} \log \left(\sum_{x} P_{X}(x)^{\alpha}\right), \quad \alpha \in \mathbb{R} \backslash\{1\}
$$

The Rényi entropy generalizes Shannon's

$$
\mathrm{H}(X)=\lim _{\alpha \rightarrow 1} \mathrm{H}_{\alpha}(X)
$$

Task: Find a Rényi-type common information measure $\mathrm{C}_{\alpha}(X ; Y)$

$$
\mathrm{C}_{\mathrm{W}}(X ; Y)=\lim _{\alpha \rightarrow 1} \mathrm{C}_{\alpha}(X ; Y)
$$

Variation 2

When $X=(U, V)$ and $Y=(V, W)$ with $U \Perp V \Perp W$

$$
\mathrm{C}_{\mathrm{W}}(X ; Y)=\mathrm{H}(V)
$$

Variation 2

When $X=(U, V)$ and $Y=(V, W)$ with $U \Perp V \Perp W$

$$
\mathrm{C}_{\mathrm{W}}(X ; Y)=\mathrm{H}(V)
$$

Assume now that Z is independent of U and W but not of V The common information between X and Y relevant to Z is

$$
\mathrm{C}(X ; Y \rightarrow Z)=\mathrm{I}(V ; Z)
$$

Variation 2

When $X=(U, V)$ and $Y=(V, W)$ with $U \Perp V \Perp W$

$$
\mathrm{C}_{\mathrm{W}}(X ; Y)=\mathrm{H}(V)
$$

Assume now that Z is independent of U and W but not of V The common information between X and Y relevant to Z is

$$
\mathrm{C}(X ; Y \rightarrow Z)=\mathrm{I}(V ; Z)
$$

Task: Generalize this notion of relevant common information

An Operational Approach Towards $\mathrm{C}_{\alpha}(X ; Y)$

Yu and Tan suggested to replace the criterion

$$
\frac{1}{n} \mathscr{D}\left(P_{X^{n} Y^{n}} \| P_{X Y}^{n}\right) \rightarrow 0
$$

in Wyner's definition of $\mathrm{C}_{2}(X ; Y)$ with

$$
\frac{1}{n} \mathscr{D}_{\alpha}\left(P_{X^{n} Y^{n}} \| P_{X Y}^{n}\right) \rightarrow 0, \quad \alpha \in \mathbb{R}
$$

where

$$
\mathscr{D}_{\alpha}(P \| Q)=\frac{1}{\alpha-1} \log \left(\sum_{x} \frac{P(x)^{\alpha}}{Q(x)^{\alpha-1}}\right), \quad \alpha \in \mathbb{R} \backslash\{1\}
$$

An Operational Approach Towards $\mathrm{C}_{\alpha}(X ; Y)$

Theorem (Yu and Tan, 2018)

$$
\mathrm{C}_{\alpha}^{\mathrm{YT}}(X ; Y)= \begin{cases}0 & \text { when } \alpha=0 \\ \mathrm{C}_{\mathrm{W}}(X ; Y) & \text { when } \alpha \in(0,1]\end{cases}
$$

Yu and Tan also obtained bounds on $\mathrm{C}_{\alpha}^{\mathrm{YT}}(X ; Y)$ for $\alpha \in(1,2]$

A Different Operational Approach Towards $\mathrm{C}_{\alpha}(X ; Y)$

We propose a different approach based on

A Simple Observation

The least description rate R of M that is required to drive $\frac{1}{n} \log \mathrm{E}\left[G\left(X^{n} \mid M\right)^{\rho}\right]$ to zero is $\mathrm{H}_{\tilde{\rho}}(X)$ where $\tilde{\rho}=1 /(1+\rho)$

A Different Operational Approach Towards $\mathrm{C}_{\alpha}(X ; Y)$

Instead of ...

A Different Operational Approach Towards $\mathrm{C}_{\alpha}(X ; Y)$

... consider the setup

Guesser 2

Guessing on the Gray-Wyner Network

The rate triple (R_{0}, R_{1}, R_{2}) is (E_{X}, E_{Y})-achievable if there exists a joint encoder and guessing strategies for X^{n} and Y^{n} that satisfy

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{1}{n} \log \mathrm{E}\left[G\left(X^{n} \mid M_{0}, M_{1}\right)^{\rho}\right] \leq E_{X} \\
& \lim _{n \rightarrow \infty} \frac{1}{n} \log \mathrm{E}\left[G\left(Y^{n} \mid M_{0}, M_{2}\right)^{\rho}\right] \leq E_{Y}
\end{aligned}
$$

Guessing on the Gray-Wyner Network

Theorem (Graczyk and Lapidoth, 2021)

The set of all $\left(E_{X}, E_{Y}\right)$-achievable rate triples $\left(R_{0}, R_{1}, R_{2}\right)$ is given by

$$
\begin{aligned}
\bigcap_{X Y} \bigcup_{Q_{W \mid X Y}}\{ & \left(R_{0}, R_{1}, R_{2}\right): \\
& R_{0} \geq \mathrm{I}_{Q}(W ; X, Y) \\
& R_{1} \geq \mathrm{H}_{Q}(X \mid W)-\frac{1}{\rho}\left(E_{X}+\mathscr{D}\left(Q_{X Y} \| P_{X Y}\right)\right) \\
& \left.R_{2} \geq \mathrm{H}_{Q}(Y \mid W)-\frac{1}{\rho}\left(E_{Y}+\mathscr{D}\left(Q_{X Y} \| P_{X Y}\right)\right)\right\}
\end{aligned}
$$

Guessing on the Gray-Wyner Network

Theorem (Graczyk and Lapidoth, 2021)

The set of all (E_{X}, E_{Y})-achievable rate triples $\left(R_{0}, R_{1}, R_{2}\right)$ is given by

$$
\begin{aligned}
\bigcap_{X Y} \bigcup_{Q_{W \mid X Y}}\{ & \left(R_{0}, R_{1}, R_{2}\right): \\
& R_{0} \geq \mathrm{I}_{Q}(W ; X, Y) \\
& R_{1} \geq \mathrm{H}_{Q}(X \mid W)-\frac{1}{\rho}\left(E_{X}+\mathscr{D}\left(Q_{X Y} \| P_{X Y}\right)\right) \\
& \left.R_{2} \geq \mathrm{H}_{Q}(Y \mid W)-\frac{1}{\rho}\left(E_{Y}+\mathscr{D}\left(Q_{X Y} \| P_{X Y}\right)\right)\right\}
\end{aligned}
$$

Red: Gray-Wyner Source Coding Region

Proof Outline

1. Assume $\left(X^{n}, Y^{n}\right)$ are equiprobable over a type class $\mathcal{T}^{(n)}\left(Q_{X Y}\right)$ (rather than IID according to $P_{X Y}$)
2. Find the $\left(E_{X}, E_{Y}\right)$-achievable rate triples under that assumption (direct part via type covering, converse mostly standard)
3. Account for the assumption via the factor $2^{-n \mathscr{D}\left(Q_{X Y} \| P_{X Y}\right)}$

An Operational Approach Towards $\mathrm{C}_{\tilde{\rho}}(X ; Y)$

Define the Rényi common information $\mathrm{C}_{\tilde{\rho}}(X ; Y)$ of order $\tilde{\rho}=1 /(1+\rho)$ between X and Y as the least common rate R_{0} under which

$$
\begin{gathered}
\lim _{n \rightarrow \infty} \frac{1}{n} \log \mathrm{E}\left[G\left(X^{n} \mid M_{0}, M_{1}\right)^{\rho}\right]=0 \\
\text { and } \\
\lim _{n \rightarrow \infty} \frac{1}{n} \log \mathrm{E}\left[G\left(Y^{n} \mid M_{0}, M_{2}\right)^{\rho}\right]=0
\end{gathered}
$$

with (R_{0}, R_{1}, R_{2}) obeying the no-excess-rate constraint

An Operational Approach Towards $\mathrm{C}_{\tilde{\rho}}(X ; Y)$

Define the Rényi common information $\mathrm{C}_{\tilde{\rho}}(X ; Y)$ of order $\tilde{\rho}=1 /(1+\rho)$ between X and Y as the least common rate R_{0} under which

$$
\begin{gathered}
\lim _{n \rightarrow \infty} \frac{1}{n} \log \mathrm{E}\left[G\left(X^{n} \mid M_{0}, M_{1}\right)^{\rho}\right]=0 \\
\text { and } \\
\lim _{n \rightarrow \infty} \frac{1}{n} \log \mathrm{E}\left[G\left(Y^{n} \mid M_{0}, M_{2}\right)^{\rho}\right]=0
\end{gathered}
$$

with (R_{0}, R_{1}, R_{2}) obeying the no-excess-rate constraint
We shall focus on the $(0,0)$-achievable rate triples $\left(R_{0}, R_{1}, R_{2}\right)$

Least Sum Rate in the Gray-Wyner Guessing Problem

To incorporate the no-excess-rate constraint we need the least $(0,0)$-achievable sum rate

Least Sum Rate in the Gray-Wyner Guessing Problem

To incorporate the no-excess-rate constraint we need the least $(0,0)$-achievable sum rate

Because
$\left(R_{0}, R_{1}, R_{2}\right)$ is achievable $\Longrightarrow\left(R_{0}+R_{1}+R_{2}, 0,0\right)$ is achievable

Least Sum Rate in the Gray-Wyner Guessing Problem

To incorporate the no-excess-rate constraint we need the least $(0,0)$-achievable sum rate

Because

$$
\left(R_{0}, R_{1}, R_{2}\right) \text { is achievable } \Longrightarrow\left(R_{0}+R_{1}+R_{2}, 0,0\right) \text { is achievable }
$$ the least sum rate equals the least R_{0} in

$$
\bigcap_{Q_{X Y}} \bigcup_{Q_{W \mid X Y}}\left\{\begin{aligned}
R_{0} & \geq \mathrm{I}_{Q}(W ; X, Y) \\
R_{0}: & 0 \geq \mathrm{H}_{Q}(X \mid W)-\frac{1}{\rho}\left(0+\mathscr{D}\left(Q_{X Y} \| P_{X Y}\right)\right) \\
0 & \geq \mathrm{H}_{Q}(Y \mid W)-\frac{1}{\rho}\left(0+\mathscr{D}\left(Q_{X Y} \| P_{X Y}\right)\right)
\end{aligned}\right\}
$$

Least Sum Rate in the Gray-Wyner Guessing Problem

Lemma (Graczyk and Lapidoth, 2021)
The least $(0,0)$-achievable sum rate R_{Σ}^{*} equals

$$
\sup _{Q_{X Y}} \inf _{Q_{W \mid X Y}:} \begin{aligned}
& \mathrm{H}_{Q}(X \mid W) \leq \mathscr{D}\left(Q_{X Y} \| P_{X Y}\right) / \rho \\
& \mathrm{H}_{Q}(Y \mid W) \leq \mathscr{D}\left(Q_{X Y} \| P_{X Y}\right) / \rho
\end{aligned} \mathrm{I}_{Q}(W ; X, Y)
$$

Least Sum Rate in the Gray-Wyner Guessing Problem

Lemma (Graczyk and Lapidoth, 2021)
The least $(0,0)$-achievable sum rate R_{Σ}^{*} equals

$$
\sup _{Q_{X Y}} \inf _{Q_{W \mid X Y}:} \begin{aligned}
& \mathrm{H}_{Q}(X \mid W) \leq \mathscr{D}\left(Q_{X Y} \| P_{X Y}\right) / \rho \\
& \mathrm{H}_{Q}(Y \mid W) \leq \mathscr{D}\left(Q_{X Y} \| P_{X Y}\right) / \rho
\end{aligned} \mathrm{I}_{Q}(W ; X, Y)
$$

Two observations:

1. In general $R_{\Sigma}^{*}<\mathrm{H}_{\tilde{\rho}}(X, Y)$
2. Because $\operatorname{argmax} Q_{X Y} \rightarrow P_{X Y}$ as $\rho \rightarrow 0$

$$
\lim _{\rho \rightarrow 0} R_{\Sigma}^{*}=\mathrm{H}_{P}(X, Y)
$$

An Operational Approach Towards $\mathrm{C}_{\tilde{\rho}}(X ; Y)$

Theorem (Graczyk and Lapidoth, 2021)

The Rényi common information $\mathrm{C}_{\tilde{\rho}}(X ; Y)$ of order $\tilde{\rho}$ between X and Y equals

$$
\begin{aligned}
& \qquad \begin{array}{ll}
\sup _{Q_{X Y}} & \inf ^{\left(\mathrm{H}_{Q}(X \mid W)-\mathscr{D}\left(Q_{X Y} \| P_{X Y}\right) / \rho\right)^{+}} \\
& \mathrm{I}_{Q}(W ; X, Y) \\
Q_{W \mid X Y}:+\left(\mathrm{H}_{Q}(Y \mid W)-\mathscr{D}\left(Q_{X Y} \| P_{X Y}\right) / \rho\right)^{+} \\
+ & \mathrm{I}_{Q}(W ; X, Y) \leq R_{\Sigma}^{*}
\end{array} \\
& \text { where }(\cdot)^{+}=\max (\cdot, 0)
\end{aligned}
$$

Does $\mathrm{C}_{\tilde{\rho}}(X ; Y)$ Generalize $\mathrm{C}_{\mathrm{W}}(X ; Y)$?

A final observation about $\mathrm{C}_{\tilde{\rho}}(X ; Y)$:
Because $\operatorname{argmax} Q_{X Y} \rightarrow P_{X Y}$ and $R_{\Sigma}^{*} \rightarrow \mathrm{H}_{P}(X, Y)$ as $\rho \rightarrow 0$

$$
\begin{aligned}
& \left(\mathrm{H}_{Q}(X \mid W)-\mathscr{D}\left(Q_{X Y} \| P_{X Y}\right) / \rho\right)^{+} \\
+ & \left(\mathrm{H}_{Q}(Y \mid W)-\mathscr{D}\left(Q_{X Y} \| P_{X Y}\right) / \rho\right)^{+} \\
+ & \mathrm{I}_{Q}(W ; X, Y) \leq R_{\Sigma}^{*}
\end{aligned}
$$

is about equivalent to

$$
\mathrm{H}_{P}(X \mid W)+\mathrm{H}_{P}(Y \mid W)+\mathrm{I}_{P}(W ; X, Y) \leq \mathrm{H}_{P}(X, Y)
$$

for ρ sufficiently small

Does $\mathrm{C}_{\tilde{\rho}}(X ; Y)$ Generalize $\mathrm{C}_{\mathrm{W}}(X ; Y)$?

A final observation about $\mathrm{C}_{\tilde{\rho}}(X ; Y)$:
Because $\operatorname{argmax} Q_{X Y} \rightarrow P_{X Y}$ and $R_{\Sigma}^{*} \rightarrow \mathrm{H}_{P}(X, Y)$ as $\rho \rightarrow 0$

$$
\begin{aligned}
& \left(\mathrm{H}_{Q}(X \mid W)-\mathscr{D}\left(Q_{X Y} \| P_{X Y}\right) / \rho\right)^{+} \\
+ & \left(\mathrm{H}_{Q}(Y \mid W)-\mathscr{D}\left(Q_{X Y} \| P_{X Y}\right) / \rho\right)^{+} \\
+ & \mathrm{I}_{Q}(W ; X, Y) \leq R_{\Sigma}^{*}
\end{aligned}
$$

is about equivalent to

$$
\mathrm{H}_{P}(X \mid W)+\mathrm{H}_{P}(Y \mid W)+\mathrm{I}_{P}(W ; X, Y) \leq \mathrm{H}_{P}(X, Y)
$$

for ρ sufficiently small

Does $\mathrm{C}_{\tilde{\rho}}(X ; Y)$ Generalize $\mathrm{C}_{\mathrm{W}}(X ; Y)$?

A final observation about $\mathrm{C}_{\tilde{\rho}}(X ; Y)$:
Because $\operatorname{argmax} Q_{X Y} \rightarrow P_{X Y}$ and $R_{\Sigma}^{*} \rightarrow \mathrm{H}_{P}(X, Y)$ as $\rho \rightarrow 0$

$$
\begin{aligned}
& \left(\mathrm{H}_{Q}(X \mid W)-\mathscr{D}\left(Q_{X Y} \| P_{X Y}\right) / \rho\right)^{+} \\
+ & \left(\mathrm{H}_{Q}(Y \mid W)-\mathscr{D}\left(Q_{X Y} \| P_{X Y}\right) / \rho\right)^{+} \\
+ & \mathrm{I}_{Q}(W ; X, Y) \leq R_{\Sigma}^{*}
\end{aligned}
$$

is about equivalent to

$$
\mathrm{H}_{P}(X \mid W)+\mathrm{H}_{P}(Y \mid W)+\mathrm{I}_{P}(W ; X, Y) \leq \mathrm{H}_{P}(X, Y)
$$

for ρ sufficiently small

Does $\mathrm{C}_{\tilde{\rho}}(X ; Y)$ Generalize $\mathrm{C}_{\mathrm{W}}(X ; Y)$?

A final observation about $\mathrm{C}_{\tilde{\rho}}(X ; Y)$:
Because $\operatorname{argmax} Q_{X Y} \rightarrow P_{X Y}$ and $R_{\Sigma}^{*} \rightarrow \mathrm{H}_{P}(X, Y)$ as $\rho \rightarrow 0$

$$
\begin{aligned}
& \left(\mathrm{H}_{Q}(X \mid W)-\mathscr{D}\left(Q_{X Y} \| P_{X Y}\right) / \rho\right)^{+} \\
+ & \left(\mathrm{H}_{Q}(Y \mid W)-\mathscr{D}\left(Q_{X Y} \| P_{X Y}\right) / \rho\right)^{+} \\
+ & \mathrm{I}_{Q}(W ; X, Y) \leq R_{\Sigma}^{*}
\end{aligned}
$$

is about equivalent to

$$
\mathrm{H}_{P}(X \mid W)+\mathrm{H}_{P}(Y \mid W)+\mathrm{I}_{P}(W ; X, Y) \leq \mathrm{H}_{P}(X, Y)
$$

for ρ sufficiently small

Does $\mathrm{C}_{\tilde{\rho}}(X ; Y)$ Generalize $\mathrm{C}_{\mathrm{W}}(X ; Y)$?

A final observation about $\mathrm{C}_{\tilde{\rho}}(X ; Y)$:
Because $\operatorname{argmax} Q_{X Y} \rightarrow P_{X Y}$ and $R_{\Sigma}^{*} \rightarrow \mathrm{H}_{P}(X, Y)$ as $\rho \rightarrow 0$

$$
\begin{aligned}
& \left(\mathrm{H}_{Q}(X \mid W)-\mathscr{D}\left(Q_{X Y} \| P_{X Y}\right) / \rho\right)^{+} \\
+ & \left(\mathrm{H}_{Q}(Y \mid W)-\mathscr{D}\left(Q_{X Y} \| P_{X Y}\right) / \rho\right)^{+} \\
+ & \mathrm{I}_{Q}(W ; X, Y) \leq R_{\Sigma}^{*}
\end{aligned}
$$

is about equivalent to

$$
\mathrm{H}_{P}(X \mid W)+\mathrm{H}_{P}(Y \mid W)+\mathrm{I}_{P}(W ; X, Y) \leq \mathrm{H}_{P}(X, Y)
$$

for ρ sufficiently small

Does $\mathrm{C}_{\tilde{\rho}}(X ; Y)$ Generalize $\mathrm{C}_{\mathrm{W}}(X ; Y)$?

Because

$$
\begin{aligned}
& \mathrm{H}_{P}(X \mid W)+\mathrm{H}_{P}(Y \mid W)+\mathrm{I}_{P}(W ; X, Y) \leq \mathrm{H}_{P}(W ; X, Y) \\
& \quad \Longleftrightarrow \mathrm{H}_{P}(X \mid W)+\mathrm{H}_{P}(Y \mid W) \leq \mathrm{H}_{P}(X, Y \mid W) \\
& \quad \Longleftrightarrow X \rightarrow W \rightarrow Y \text { under } P
\end{aligned}
$$

we indeed have

$$
\lim _{\rho \rightarrow 0} \mathrm{C}_{\tilde{\rho}}(X ; Y)=\min _{\substack{P_{W \mid X Y}: \\ X \rightarrow W \rightarrow Y}} \mathrm{I}_{P}(W ; X, Y)=\mathrm{C}_{\mathrm{W}}(X ; Y)
$$

Three Follow-Up Questions

1. Can $\mathrm{C}_{\tilde{\rho}}(X ; Y)$ be expressed in terms of $\mathrm{H}_{\tilde{\rho}}(\cdot), \mathscr{D}_{\tilde{\rho}}(\cdot \| \cdot)$, and $\mathrm{I}_{\tilde{\rho}}(\cdot \mid \cdot)$?
2. Can we find a suitable operational definition for $\mathrm{C}_{\alpha}(X ; Y)$ when $\alpha \notin[0,1]$?
3. How to systematically agree on a Rényi extension of $\mathrm{C}_{\mathrm{W}}(X ; Y)$? Proposition: via axiomization of $\mathrm{C}_{\mathrm{W}}(X ; Y)$

Onto Relevant Common Information

Recall the example: $X=(U, V), Y=(V, W)$ with $U \Perp V \Perp W$

$$
\mathrm{C}_{\mathrm{W}}(X ; Y)=\mathrm{H}(V) \text { and } \mathrm{C}(X ; Y \rightarrow Z)=\mathrm{I}(V ; Z)
$$

Onto Relevant Common Information

Recall the example: $X=(U, V), Y=(V, W)$ with $U \Perp V \Perp W$

$$
\mathrm{C}_{\mathrm{W}}(X ; Y)=\mathrm{H}(V) \text { and } \mathrm{C}(X ; Y \rightarrow Z)=\mathrm{I}(V ; Z)
$$

Task: Generalize this notion of relevant common information following a suitable operational approach

An Operational Approach Towards $\mathrm{C}(X ; Y \rightarrow Z)$

 Instead of ...

An Operational Approach Towards $\mathrm{C}(X ; Y \rightarrow Z)$

... consider the setup

An Operational Approach Towards $\mathrm{C}(X ; Y \rightarrow Z)$

... consider the setup

For a given PMF $P_{X Y Z}$ we require that Decoder 1 and 2 produce X^{n} and Y^{n} that, together with $Z^{n} \sim$ IID P_{Z}, coordinate $P_{X Y Z}$ in the weak sense that

$$
\mathscr{D}\left(\Pi_{X^{n} Y^{n} Z^{n}} \| P_{X Y Z}\right) \rightarrow 0
$$

where $\Pi_{X^{n} Y^{n} Z^{n}}$ denotes the empirical distribution of $\left(X^{n}, Y^{n}, Z^{n}\right)$

An Operational Approach Towards $\mathrm{C}(X ; Y \rightarrow Z)$

Define the common information $\mathrm{C}(X ; Y \rightarrow Z)$ between X and Y relevant to Z as the least common rate R_{0} that allows for weak coordination of $P_{X Y Z}$ subject to the no-excess-rate constraint

$$
R_{0}+R_{1}+R_{2}=\mathrm{I}(X, Y ; Z)
$$

Weak Coordination on the Gray-Wyner Network

Theorem (Graczyk, Lapidoth, and Wigger, 2022)

The set of all rate triples $\left(R_{0}, R_{1}, R_{2}\right)$ that allow for weak coordination of $P_{X Y Z}$ subject to the no-excessrate constraint $R_{0}+R_{1}+R_{2}=\mathrm{I}(X, Y ; Z)$ is given by

$$
\bigcup_{\substack{P_{W \mid X Y Z}: \\ X \rightarrow W \rightarrow Y \\ W \rightarrow(X, Y) \rightarrow Z}}\left\{\left(R_{0}, R_{1}, R_{2}\right): \mathrm{I}^{2}(Z ; W), R_{1} \geq \mathrm{I}(Z ; X, W)\right\}
$$

An Operational Approach Towards $\mathrm{C}(X ; Y \rightarrow Z)$

Corollary (Graczyk, Lapidoth, and Wigger, 2022)

$$
\mathrm{C}(X ; Y \rightarrow Z)=\min _{\substack{P_{W \mid X Y Z}: \\ X \rightarrow W \rightarrow Y \\ W \rightarrow(X, Y) \rightarrow Z}} \mathrm{I}(Z ; W)
$$

Proof

1. By the theorem $R_{0} \geq \mathrm{C}(X ; Y \rightarrow Z)$

Proof

1. By the theorem $R_{0} \geq \mathrm{C}(X ; Y \rightarrow Z)$
2. Fix some $P_{W \mid X Y Z}$ that achieves the minimum in $\mathrm{C}(X ; Y \rightarrow Z)$ and let

$$
\begin{aligned}
& R_{0}=\mathrm{I}(Z ; W) \\
& R_{1}=\mathrm{I}(Z ; X, W)-\mathrm{I}(Z ; W)
\end{aligned}
$$

Proof

1. By the theorem $R_{0} \geq \mathrm{C}(X ; Y \rightarrow Z)$
2. Fix some $P_{W \mid X Y Z}$ that achieves the minimum in $\mathrm{C}(X ; Y \rightarrow Z)$ and let

$$
\begin{aligned}
& R_{0}=\mathrm{I}(Z ; W) \\
& R_{1}=\mathrm{I}(Z ; X, W)-\mathrm{I}(Z ; W)
\end{aligned}
$$

3. Show that we can set

$$
R_{2}=\mathrm{I}(Z ; Y, W)-\mathrm{I}(Z ; W)+\Delta
$$

for some $\Delta \geq 0$ so that $R_{0}+R_{1}+R_{2}=\mathrm{I}(X, Y ; Z)$

Proof

This is equivalent to showing that

$$
\mathrm{I}(Z ; X, W)+\mathrm{I}(Z ; Y, W)-\mathrm{I}(Z ; W) \leq \mathrm{I}(X, Y ; Z)
$$

Proof

This is equivalent to showing that

$$
\mathrm{I}(Z ; X, W)+\mathrm{I}(Z ; Y, W)-\mathrm{I}(Z ; W) \leq \mathrm{I}(X, Y ; Z)
$$

Indeed, because $X \rightarrow W \rightarrow Y$ and $W \rightarrow(X, Y) \rightarrow Z$,

$$
\begin{aligned}
& \mathrm{I}(Z ; X, W)+\mathrm{I}(Z ; Y, W)-\mathrm{I}(Z ; W) \\
& \quad=\mathrm{I}(Z ; X \mid W)+\mathrm{I}(Z ; Y, W) \\
& \quad=\mathrm{H}(X \mid W)-\mathrm{H}(X \mid W, Z)+\mathrm{I}(Z ; Y, W)
\end{aligned}
$$

Proof

This is equivalent to showing that

$$
\mathrm{I}(Z ; X, W)+\mathrm{I}(Z ; Y, W)-\mathrm{I}(Z ; W) \leq \mathrm{I}(X, Y ; Z)
$$

Indeed, because $X \rightarrow W \rightarrow Y$ and $W \rightarrow(X, Y) \rightarrow Z$,

$$
\begin{aligned}
& \mathrm{I}(Z ; X, W)+\mathrm{I}(Z ; Y, W)-\mathrm{I}(Z ; W) \\
& \quad=\mathrm{I}(Z ; X \mid W)+\mathrm{I}(Z ; Y, W) \\
& \quad=\mathrm{H}(X \mid W)-\mathrm{H}(X \mid W, Z)+\mathrm{I}(Z ; Y, W) \\
& \quad \leq \mathrm{H}(X \mid W)-\mathrm{H}(X \mid W, Y, Z)+\mathrm{I}(Z ; Y, W)
\end{aligned}
$$

Proof

This is equivalent to showing that

$$
\mathrm{I}(Z ; X, W)+\mathrm{I}(Z ; Y, W)-\mathrm{I}(Z ; W) \leq \mathrm{I}(X, Y ; Z)
$$

Indeed, because $X \rightarrow W \rightarrow Y$ and $W \rightarrow(X, Y) \rightarrow Z$,

$$
\begin{aligned}
& \mathrm{I}(Z ; X, W)+\mathrm{I}(Z ; Y, W)-\mathrm{I}(Z ; W) \\
& \quad=\mathrm{I}(Z ; X \mid W)+\mathrm{I}(Z ; Y, W) \\
& \quad=\mathrm{H}(X \mid W)-\mathrm{H}(X \mid W, Z)+\mathrm{I}(Z ; Y, W) \\
& \quad \leq \mathrm{H}(X \mid W)-\mathrm{H}(X \mid W, Y, Z)+\mathrm{I}(Z ; Y, W) \\
& \quad=\mathrm{H}(X \mid W, Y)-\mathrm{H}(X \mid W, Y, Z)+\mathrm{I}(Z ; Y, W)
\end{aligned}
$$

Proof

This is equivalent to showing that

$$
\mathrm{I}(Z ; X, W)+\mathrm{I}(Z ; Y, W)-\mathrm{I}(Z ; W) \leq \mathrm{I}(X, Y ; Z)
$$

Indeed, because $X \rightarrow W \rightarrow Y$ and $W \rightarrow(X, Y) \rightarrow Z$,

$$
\begin{aligned}
& \mathrm{I}(Z ; X, W)+\mathrm{I}(Z ; Y, W)-\mathrm{I}(Z ; W) \\
& \quad=\mathrm{I}(Z ; X \mid W)+\mathrm{I}(Z ; Y, W) \\
& \quad=\mathrm{H}(X \mid W)-\mathrm{H}(X \mid W, Z)+\mathrm{I}(Z ; Y, W) \\
& \quad \leq \mathrm{H}(X \mid W)-\mathrm{H}(X \mid W, Y, Z)+\mathrm{I}(Z ; Y, W) \\
& \quad=\mathrm{H}(X \mid W, Y)-\mathrm{H}(X \mid W, Y, Z)+\mathrm{I}(Z ; Y, W) \\
& \quad=\mathrm{I}(Z ; X \mid W, Y)+\mathrm{I}(Z ; Y, W) \\
& \quad=\mathrm{I}(Z ; X, Y, W)
\end{aligned}
$$

Proof

This is equivalent to showing that

$$
\mathrm{I}(Z ; X, W)+\mathrm{I}(Z ; Y, W)-\mathrm{I}(Z ; W) \leq \mathrm{I}(X, Y ; Z)
$$

Indeed, because $X \rightarrow W \rightarrow Y$ and $W \rightarrow(X, Y) \rightarrow Z$,

$$
\begin{aligned}
& \mathrm{I}(Z ; X, W)+\mathrm{I}(Z ; Y, W)-\mathrm{I}(Z ; W) \\
& \quad=\mathrm{I}(Z ; X \mid W)+\mathrm{I}(Z ; Y, W) \\
& \quad=\mathrm{H}(X \mid W)-\mathrm{H}(X \mid W, Z)+\mathrm{I}(Z ; Y, W) \\
& \quad \leq \mathrm{H}(X \mid W)-\mathrm{H}(X \mid W, Y, Z)+\mathrm{I}(Z ; Y, W) \\
& \quad=\mathrm{H}(X \mid W, Y)-\mathrm{H}(X \mid W, Y, Z)+\mathrm{I}(Z ; Y, W) \\
& \quad=\mathrm{I}(Z ; X \mid W, Y)+\mathrm{I}(Z ; Y, W) \\
& \quad=\mathrm{I}(Z ; X, Y, W) \\
& \quad=\mathrm{I}(Z ; X, Y)
\end{aligned}
$$

Two Follow-Up Questions

1. What result do we obtain in the strong coordination problem? (instead of $\Pi_{X^{n} Y^{n} Z^{n}} \rightarrow P_{X Y Z}$ require that $P_{X^{n} Y^{n} Z^{n}} \rightarrow P_{X Y Z}^{n}$)
2. How to systematically agree on a definition for relevant common information?

Thank you for your attention!

