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Wyner’s Common Information

Definition 1 (Wyner 1975)
The common information C1(X;Y ) between X and Y is the
least common rate R0 under which almost-lossless compression
of (Xn, Y n) is possible subject to the no-excess-rate constraint

R0 +R1 +R2 = H(X,Y )
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Wyner’s Common Information

Definition 2 (Wyner 1975)
The common information C2(X;Y ) between X and Y is the
least common rate RW under which simulation of (Xn, Y n)

is possible in the sense that

1

n
D(PXnY n ∥Pn

XY ) → 0
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Wyner’s Common Information

Theorem (Wyner 1975)

C1(X;Y ) = C2(X;Y ) = CW(X;Y )

where

CW(X;Y ) ≜ min
PW |XY :

X→W→Y

I(W ;X,Y )
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Variation 1

Recall the Rényi entropy of X ∼ PX

Hα(X) =
1

1− α
log

(∑
x

PX(x)α

)
, α ∈ R \ {1}
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Variation 1

Recall the Rényi entropy of X ∼ PX

Hα(X) =
1

1− α
log

(∑
x

PX(x)α

)
, α ∈ R \ {1}

The Rényi entropy generalizes Shannon’s

H(X) = lim
α→1

Hα(X)
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Variation 1

Recall the Rényi entropy of X ∼ PX

Hα(X) =
1

1− α
log

(∑
x

PX(x)α

)
, α ∈ R \ {1}

The Rényi entropy generalizes Shannon’s

H(X) = lim
α→1

Hα(X)

Task: Find a Rényi-type common information measure Cα(X;Y )

CW(X;Y ) = lim
α→1

Cα(X;Y )

4



Variation 2

When X = (U, V ) and Y = (V,W ) with U ⊥⊥ V ⊥⊥ W

CW(X;Y ) = H(V )
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Variation 2

When X = (U, V ) and Y = (V,W ) with U ⊥⊥ V ⊥⊥ W

CW(X;Y ) = H(V )

Assume now that Z is independent of U and W but not of V
The common information between X and Y relevant to Z is

C(X;Y → Z) = I(V ;Z)
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Variation 2

When X = (U, V ) and Y = (V,W ) with U ⊥⊥ V ⊥⊥ W

CW(X;Y ) = H(V )

Assume now that Z is independent of U and W but not of V
The common information between X and Y relevant to Z is

C(X;Y → Z) = I(V ;Z)

Task: Generalize this notion of relevant common information
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An Operational Approach Towards Cα(X;Y )

Yu and Tan suggested to replace the criterion

1

n
D(PXnY n ∥Pn

XY ) → 0

in Wyner’s definition of C2(X;Y ) with

1

n
Dα(PXnY n ∥Pn

XY ) → 0, α ∈ R

where

Dα(P ∥Q) =
1

α− 1
log

(∑
x

P (x)α

Q(x)α−1

)
, α ∈ R \ {1}
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An Operational Approach Towards Cα(X;Y )

Theorem (Yu and Tan, 2018)

CYT
α (X;Y ) =

{
0 when α = 0

CW(X;Y ) when α ∈ (0, 1]

Yu and Tan also obtained bounds on CYT
α (X;Y ) for α ∈ (1, 2]
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A Different Operational Approach Towards Cα(X;Y )

We propose a different approach based on

A Simple Observation

Xn Encoder
M

Guesser Is Xn = xn?

The least description rate R of M that is required to drive
1
n log E[G(Xn |M)ρ] to zero is Hρ̃(X) where ρ̃ = 1/(1 + ρ)
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A Different Operational Approach Towards Cα(X;Y )

Instead of . . .
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A Different Operational Approach Towards Cα(X;Y )

. . . consider the setup

Guesser 1

Guesser 2

Is Xn = xn?

Is Y n = yn?
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Guessing on the Gray-Wyner Network

The rate triple (R0, R1, R2) is (EX , EY )-achievable if there exists
a joint encoder and guessing strategies for Xn and Y n that satisfy

lim
n→∞

1

n
log E[G(Xn | M0,M1)

ρ] ≤ EX

lim
n→∞

1

n
log E[G(Y n | M0,M2)

ρ] ≤ EY
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Guessing on the Gray-Wyner Network

Theorem (Graczyk and Lapidoth, 2021)
The set of all (EX , EY )-achievable rate triples (R0, R1, R2)

is given by⋂
QXY

⋃
QW |XY

{
(R0, R1, R2) :

R0 ≥ IQ(W ;X,Y )

R1 ≥ HQ(X | W )− 1

ρ

(
EX + D(QXY ∥PXY )

)
R2 ≥ HQ(Y | W )− 1

ρ

(
EY + D(QXY ∥PXY )

)}
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Guessing on the Gray-Wyner Network

Theorem (Graczyk and Lapidoth, 2021)
The set of all (EX , EY )-achievable rate triples (R0, R1, R2)

is given by⋂
QXY

⋃
QW |XY

{
(R0, R1, R2) :

R0 ≥ IQ(W ;X,Y )

R1 ≥ HQ(X | W )− 1

ρ

(
EX + D(QXY ∥PXY )

)
R2 ≥ HQ(Y | W )− 1

ρ

(
EY + D(QXY ∥PXY )

)}
Red: Gray-Wyner Source Coding Region
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Proof Outline

1. Assume (Xn, Y n) are equiprobable over a type class T (n)(QXY )
(rather than IID according to PXY )

2. Find the (EX , EY )-achievable rate triples under that assumption
(direct part via type covering, converse mostly standard)

3. Account for the assumption via the factor 2−nD(QXY ∥PXY )

12



An Operational Approach Towards Cρ̃(X;Y )

Define the Rényi common information Cρ̃(X;Y )
of order ρ̃ = 1/(1 + ρ) between X and Y as the
least common rate R0 under which

lim
n→∞

1

n
log E[G(Xn | M0,M1)

ρ] = 0

and

lim
n→∞

1

n
log E[G(Y n | M0,M2)

ρ] = 0

with (R0, R1, R2) obeying the no-excess-rate constraint
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An Operational Approach Towards Cρ̃(X;Y )

Define the Rényi common information Cρ̃(X;Y )
of order ρ̃ = 1/(1 + ρ) between X and Y as the
least common rate R0 under which

lim
n→∞

1

n
log E[G(Xn | M0,M1)

ρ] = 0

and

lim
n→∞

1

n
log E[G(Y n | M0,M2)

ρ] = 0

with (R0, R1, R2) obeying the no-excess-rate constraint

We shall focus on the (0, 0)-achievable rate triples (R0, R1, R2)
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Least Sum Rate in the Gray-Wyner Guessing Problem

To incorporate the no-excess-rate constraint
we need the least (0, 0)-achievable sum rate

14



Least Sum Rate in the Gray-Wyner Guessing Problem

To incorporate the no-excess-rate constraint
we need the least (0, 0)-achievable sum rate

Because

(R0, R1, R2) is achievable =⇒ (R0 +R1 +R2, 0, 0) is achievable
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Least Sum Rate in the Gray-Wyner Guessing Problem

To incorporate the no-excess-rate constraint
we need the least (0, 0)-achievable sum rate

Because

(R0, R1, R2) is achievable =⇒ (R0 +R1 +R2, 0, 0) is achievable

the least sum rate equals the least R0 in

⋂
QXY

⋃
QW |XY

R0 :

R0 ≥ IQ(W ;X,Y )

0 ≥ HQ(X | W )− 1

ρ

(
0 + D(QXY ∥PXY )

)
0 ≥ HQ(Y | W )− 1

ρ

(
0 + D(QXY ∥PXY )

)
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Least Sum Rate in the Gray-Wyner Guessing Problem

Lemma (Graczyk and Lapidoth, 2021)
The least (0, 0)-achievable sum rate R∗

Σ equals

sup
QXY

inf
QW |XY :

HQ(X |W )≤D(QXY ∥PXY )/ρ
HQ(Y |W )≤D(QXY ∥PXY )/ρ

IQ(W ;X,Y )
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Least Sum Rate in the Gray-Wyner Guessing Problem

Lemma (Graczyk and Lapidoth, 2021)
The least (0, 0)-achievable sum rate R∗

Σ equals

sup
QXY

inf
QW |XY :

HQ(X |W )≤D(QXY ∥PXY )/ρ
HQ(Y |W )≤D(QXY ∥PXY )/ρ

IQ(W ;X,Y )

Two observations:

1. In general R∗
Σ < Hρ̃(X,Y )

2. Because argmaxQXY → PXY as ρ → 0

lim
ρ→0

R∗
Σ = HP (X,Y )
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An Operational Approach Towards Cρ̃(X;Y )

Theorem (Graczyk and Lapidoth, 2021)
The Rényi common information Cρ̃(X;Y ) of order ρ̃
between X and Y equals

sup
QXY

inf

QW |XY :
(HQ(X |W )−D(QXY ∥PXY )/ρ)+

+(HQ(Y |W )−D(QXY ∥PXY )/ρ)+

+ IQ(W ;X,Y )≤R∗
Σ

IQ(W ;X,Y )

where (·)+ = max(·, 0)
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Does Cρ̃(X;Y ) Generalize CW(X;Y )?

A final observation about Cρ̃(X;Y ):

Because argmaxQXY → PXY and R∗
Σ → HP (X,Y ) as ρ → 0

(HQ(X | W )− D(QXY ∥PXY )/ρ)
+

+(HQ(Y | W )− D(QXY ∥PXY )/ρ)
+

+ IQ(W ;X,Y ) ≤ R∗
Σ

is about equivalent to

HP (X | W ) +HP (Y | W ) + IP (W ;X,Y ) ≤ HP (X,Y )

for ρ sufficiently small
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Does Cρ̃(X;Y ) Generalize CW(X;Y )?

Because

HP (X | W ) +HP (Y | W ) + IP (W ;X,Y ) ≤ HP (W ;X,Y )

⇐⇒ HP (X | W ) +HP (Y | W ) ≤ HP (X,Y | W )

⇐⇒ X → W → Y under P

we indeed have

lim
ρ→0

Cρ̃(X;Y ) = min
PW |XY :

X→W→Y

IP (W ;X,Y ) = CW(X;Y )
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Three Follow-Up Questions

1. Can Cρ̃(X;Y ) be expressed in terms
of Hρ̃(·), Dρ̃(·∥·), and Iρ̃(· | ·)?

2. Can we find a suitable operational definition
for Cα(X;Y ) when α /∈ [0, 1]?

3. How to systematically agree on a Rényi extension of CW(X;Y )?
Proposition: via axiomization of CW(X;Y )
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Onto Relevant Common Information

Recall the example: X = (U, V ), Y = (V,W ) with U ⊥⊥ V ⊥⊥ W

CW(X;Y ) = H(V ) and C(X;Y → Z) = I(V ;Z)
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Onto Relevant Common Information

Recall the example: X = (U, V ), Y = (V,W ) with U ⊥⊥ V ⊥⊥ W

CW(X;Y ) = H(V ) and C(X;Y → Z) = I(V ;Z)

Task: Generalize this notion of relevant common information
following a suitable operational approach
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An Operational Approach Towards C(X;Y → Z)

Instead of . . .
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An Operational Approach Towards C(X;Y → Z)

. . . consider the setup

Xn

Y n

Zn

21



An Operational Approach Towards C(X;Y → Z)

. . . consider the setup

Xn

Y n

Zn

For a given PMF PXY Z we require that Decoder 1 and 2 produce
Xn and Y n that, together with Zn ∼ IID PZ , coordinate PXY Z

in the weak sense that

D(ΠXnY nZn ∥PXY Z) → 0

where ΠXnY nZn denotes the empirical distribution of (Xn, Y n, Zn)
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An Operational Approach Towards C(X;Y → Z)

Define the common information C(X;Y → Z) between X and Y
relevant to Z as the least common rate R0 that allows for weak
coordination of PXY Z subject to the no-excess-rate constraint

R0 +R1 +R2 = I(X,Y ;Z)
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Weak Coordination on the Gray-Wyner Network

Theorem (Graczyk, Lapidoth, and Wigger, 2022)
The set of all rate triples (R0, R1, R2) that allow for
weak coordination of PXY Z subject to the no-excess-
rate constraint R0 +R1 +R2 = I(X,Y ;Z) is given by

⋃
PW |XY Z :

X→W→Y
W→(X,Y )→Z

(R0, R1, R2) :

R0 ≥ I(Z;W )

R0 +R1 ≥ I(Z;X,W )

R0 +R2 ≥ I(Z;Y,W )
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An Operational Approach Towards C(X;Y → Z)

Corollary (Graczyk, Lapidoth, and Wigger, 2022)

C(X;Y → Z) = min
PW |XY Z :

X→W→Y
W→(X,Y )→Z

I(Z;W )

24



Proof

1. By the theorem R0 ≥ C(X;Y → Z)
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Proof

1. By the theorem R0 ≥ C(X;Y → Z)

2. Fix some PW |XY Z that achieves the minimum in C(X;Y → Z)
and let

R0 = I(Z;W )

R1 = I(Z;X,W )− I(Z;W )
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Proof

1. By the theorem R0 ≥ C(X;Y → Z)

2. Fix some PW |XY Z that achieves the minimum in C(X;Y → Z)
and let

R0 = I(Z;W )

R1 = I(Z;X,W )− I(Z;W )

3. Show that we can set

R2 = I(Z;Y,W )− I(Z;W ) + ∆

for some ∆ ≥ 0 so that R0 +R1 +R2 = I(X,Y ;Z)
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Proof

This is equivalent to showing that

I(Z;X,W ) + I(Z;Y,W )− I(Z;W ) ≤ I(X,Y ;Z)
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Proof

This is equivalent to showing that
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= H(X | W )−H(X | W,Z) + I(Z;Y,W )
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= H(X | W,Y )−H(X | W,Y,Z) + I(Z;Y,W )

= I(Z;X | W,Y ) + I(Z;Y,W )

= I(Z;X,Y,W )
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Proof

This is equivalent to showing that

I(Z;X,W ) + I(Z;Y,W )− I(Z;W ) ≤ I(X,Y ;Z)

Indeed, because X → W → Y and W → (X,Y ) → Z,

I(Z;X,W ) + I(Z;Y,W )− I(Z;W )
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≤ H(X | W )−H(X | W,Y,Z) + I(Z;Y,W )

= H(X | W,Y )−H(X | W,Y,Z) + I(Z;Y,W )

= I(Z;X | W,Y ) + I(Z;Y,W )

= I(Z;X,Y,W )

= I(Z;X,Y )
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Two Follow-Up Questions

1. What result do we obtain in the strong coordination problem?
(instead of ΠXnY nZn → PXY Z require that PXnY nZn → Pn

XY Z)

2. How to systematically agree on a definition for
relevant common information?
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Thank you for your attention!
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