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Wyner’'s Common Information
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Definition 1 (Wyner 1975)

The common information C1(X;Y") between X and Y is the
least common rate Ry under which almost-lossless compression
of (X™,Y™) is possible subject to the no-excess-rate constraint

Ry+ Ry + Ry = H(X,Y)




Wyner’'s Common Information
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Definition 2 (Wyner 1975)

The common information C2(X;Y) between X and Y is the
least common rate Ry under which simulation of (X", Y™)
is possible in the sense that
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Wyner’'s Common Information

Theorem (Wyner 1975)
Ci(X;Y) = Co(X3Y) = Cw(X;Y)
where

Cw(X;Y)2 min I(W;X,Y)

Py xy:

X—->W-=Y




Variation 1

Recall the Rényi entropy of X ~ Px

1 ! . log<ZPX(x)o‘>, acR\ {1}

Ha(X) =



Variation 1
Recall the Rényi entropy of X ~ Px

Ha(X) = i - log(Z PX(x)O“), aeR\ {1}

The Rényi entropy generalizes Shannon's

H(X) = lim Ha(X)

a—1



Variation 1
Recall the Rényi entropy of X ~ Px

ﬁalog@PX(x)a), a R\ {1}

Ha(X) =

The Rényi entropy generalizes Shannon's

H(X) = lim Ha(X)

a—1

Task: Find a Rényi-type common information measure C,(X;Y)

Cw(X;Y) = lim Co(X;Y)



Variation 2

When X = (U,V)and Y = (V,IW)with U LV L W

Cw(X;Y) =H(V)



Variation 2

When X = (U,V)and Y = (V,IW) with U LV L W

Cw(X;Y) =H(V)

Assume now that Z is independent of U and W but not of V'
The common information between X and Y relevant to Z is

C(X;Y = 2)=1(V;2)



Variation 2
When X = (U,V)and Y = (V,IW) with U LV L W
Cw(X;Y) =H(V)

Assume now that Z is independent of U and W but not of V'
The common information between X and Y relevant to Z is

C(X;Y = 2)=1(V;2)

Task: Generalize this notion of relevant common information



An Operational Approach Towards C,(X;Y)

Yu and Tan suggested to replace the criterion

1
- D (Pxnyn || P¥y) — 0

in Wyner's definition of C2(X;Y") with

1
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An Operational Approach Towards C,(X;Y)

Theorem (Yu and Tan, 2018)

0 when o =0

CAI(X:Y) =
Cw(X;Y) when a € (0,1]

Yu and Tan also obtained bounds on CYT(X;Y) for a € (1,2]




A Different Operational Approach Towards C,(X;Y)

We propose a different approach based on

A Simple Observation

X ——y
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Guesser

— Is X" = "7

The least description rate R of M that is required to drive
Llog E[G(X™| M)] to zero is Hz(X) where p=1/(1+ p)




A Different Operational Approach Towards C,(X;Y")
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A Different Operational Approach Towards C,(X;Y")

. consider the setup
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Guessing on the Gray-Wyner Network

The rate triple (Ry, R1, R2) is (Ex, Ey)-achievable if there exists
a joint encoder and guessing strategies for X™ and Y™ that satisfy

1
lim —log E[G(X™ | My, M1)”] < Ex
n—,oo n
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lim ~ log E[G(Y" | Mo, My)] < By

n—oo N

10



Guessing on the Gray-Wyner Network

Theorem (Graczyk and Lapidoth, 2021)

The set of all (Ex, Ey)-achievable rate triples (Ry, R1, R2)
is given by

N U {Ro.Ri R):

Qxy Qw|xy

Ry > Ho(X | W) - ;(EX + 2(Qxy || Pxy))

Ry > Ho(Y | W) — ;(Ey + 2(Qxy Hny))}
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Guessing on the Gray-Wyner Network

Theorem (Graczyk and Lapidoth, 2021)

The set of all (Ex, Ey)-achievable rate triples (Ry, R1, R2)
is given by

N U {ro.riR):

Qxy Qw|xy
Ry > Io(W:; X,Y)
1
Ri 2 Ho(X | W) = - (Ex + 2(Qxr | Pxv)

1

B> > Ho(Y | W)~

(BEy + 2(Qxv || PXY))}

Red: Gray-Wyner Source Coding Region
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Proof Qutline

1. Assume (X™, Y™) are equiprobable over a type class 7" (Qxy')
(rather than IID according to Pxy’)

2. Find the (Ex, Ey)-achievable rate triples under that assumption
(direct part via type covering, converse mostly standard)

3. Account for the assumption via the factor 27 (@xv [ Pxy)
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An Operational Approach Towards C;(X;Y)

Define the Rényi common information C;(X;Y)
of order p =1/(1 + p) between X and Y as the
least common rate Ry under which

1
lim = log E[G(X" | My, M1)"] = 0

n—oo n

and

1
lim —logE[G(Y™ | Mo, M2)’] =0

n—oo n

with (Rg, R1, R2) obeying the no-excess-rate constraint
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An Operational Approach Towards C;(X;Y)

Define the Rényi common information C;(X;Y)
of order p =1/(1 + p) between X and Y as the
least common rate Ry under which

1
lim = log E[G(X" | My, M1)"] = 0

n—oo n

and
1
lim —logE[G(Y" | My, M2)P] =0
n—oo n

with (Rg, R1, R2) obeying the no-excess-rate constraint

We shall focus on the (0, 0)-achievable rate triples (Rg, R1, R2)

13



Least Sum Rate in the Gray-Wyner Guessing Problem

To incorporate the no-excess-rate constraint
we need the least (0,0)-achievable sum rate

14



Least Sum Rate in the Gray-Wyner Guessing Problem

To incorporate the no-excess-rate constraint
we need the least (0,0)-achievable sum rate

Because

(Ro, R1, R2) is achievable — (Ry + R1 + R2, 0, 0) is achievable

14



Least Sum Rate in the Gray-Wyner Guessing Problem

To incorporate the no-excess-rate constraint
we need the least (0, 0)-achievable sum rate
Because
(Ro, R1, R2) is achievable — (Rp + R1 + R2, 0, 0) is achievable
the least sum rate equals the least Ry in
1
N U | R OZHQ(X\W)—;(U+-@(QXY||PXY))
Qxy Qw|xy 1

0> Ho(Y | W) — ;(0 +2(Qxy | Pxy))
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Least Sum Rate in the Gray-Wyner Guessing Problem

Lemma (Graczyk and Lapidoth, 2021)
The least (0,0)-achievable sum rate R, equals

sup inf Io(W; X,Y)
Qxy @ CHo(X|W)<2(Qxy || Pxy)/p
WIXY Ho (Y |W) < 2(Qxy || Pxy)/p

15



Least Sum Rate in the Gray-Wyner Guessing Problem

Lemma (Graczyk and Lapidoth, 2021)
The least (0,0)-achievable sum rate R, equals

sup inf Io(W; X,Y)
Qxy @ CHe(X|W)<2(Qxy || Pxy)/p
WIXYS Ho (Y |W) < 2(Qxv || Pxy)/p

Two observations:
1. In general R}, < H;(X,Y)
2. Because argmaxQxy — Pxy as p — 0

lim R = Hp(X,Y)
p—0
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An Operational Approach Towards C;(X;Y)

Theorem (Graczyk and Lapidoth, 2021)

The Rényi common information C;(X;Y) of order p
between X and Y equals

sup inf Io(W; X,Y)
Qxy (Ho(X W) —2(@Qxv || Pxy)/p)*
Qw|xy: +(Ho(Y |W) - 2(Qxvy | Pxy)/p)t
+ IQ(W;X,Y) < RE

where (1)* = max(-,0)
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Does C;(X;Y) Generalize Cy (X;Y)?

A final observation about C;(X;Y):

Because argmax QQxy — Pxy and Ry, = Hp(X,Y) asp — 0

(Ho(X | W) — 2(Qxy || Pxy)/p)*
+(Ho(Y | W) — 2(@Qxvy || Pxy)/p)*
+1o(W; X,Y) < R5,

is about equivalent to
Hp(X | W) +Hp(Y [ W) +1p(W; X,Y) < Hp(X,Y)

for p sufficiently small
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Does C;(X;Y) Generalize Cy (X;Y)?

A final observation about C;(X;Y):
Because argmax () xy — Pxy and Ry, = Hp(X,Y) as p — 0

(Ho(X | W) = 2(Qxy || Pxy)/p)*
+(Ho(Y | W) — 2(@Qxvy || Pxy)/p)*
FIo(W;X,Y) < RS

is about equivalent to
Hp(X [ W)+ Hp(Y | W) + Ip(W; X, Y) < Hp(X, V)

for p sufficiently small

17



Does C;(X;Y) Generalize Cy (X;Y)?

A final observation about C;(X;Y):

Because argmax () xy — Pxy and Ry, = Hp(X,Y) as p — 0

(Ho(X | W) — 2(Qxy || Pxy)/p)*
+ (Ho(Y | W) — 2(Qxvy | Pxy)/p)*
+1o(W; X,Y) < R5,

is about equivalent to
Hp(X | W) +Hp(Y [ W) +1p(W; X,Y) < Hp(X,Y)

for p sufficiently small
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Does C;(X;Y) Generalize Cy (X;Y)?

A final observation about C;(X;Y):

Because argmax () xy — Pxy and Ry, = Hp(X,Y) as p — 0

(Ho(X | W) — 2(Qxy || Pxy)/p)*
+(Ho(Y | W) — 2(@Qxvy || Pxy)/p)*
Y Io(W;X,Y) < RS

is about equivalent to
Hp(X | W)+ Hp(Y | W)+ 1p(W; X, ) < Hp(X,Y)

for p sufficiently small

17



Does C;(X;Y) Generalize Cy (X;Y)?

A final observation about C;(X;Y):

Because argmax Q xy — Pxy and R}, — Hp(X,Y) as p — 0

(Ho(X | W) — 2(Qxy || Pxy)/p)*
+(Ho(Y | W) — 2(@Qxvy || Pxy)/p)*
+1o(W; X,Y) < R5,

is about equivalent to
Hp(X | W) +Hp(Y [ W) +1p(W; X,Y) < Hp(X,Y)

for p sufficiently small

17



Does C;(X;Y) Generalize Cy (X;Y)?

Because

Hp(X [W)+Hp(Y [ W) +Ip(W; X,Y) <Hp(W; X,Y)
s Hp(X | W)+ Hp(Y | W) < Hp(X,Y | W)
< X - W — Y under P

we indeed have

lim C3(X;Y)= min Ip(W;X,Y)=Cw(X;Y)
p—0 Py xy:
X—->W-=Y
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Three Follow-Up Questions

1. Can C;(X;Y") be expressed in terms
of Ha(), Zp- 1), and (- | )?

2. Can we find a suitable operational definition
for Co(X;Y) when a ¢ [0, 1]7

3. How to systematically agree on a Rényi extension of Cyw(X;Y)?
Proposition: via axiomization of Cyw (X;Y)

19



Onto Relevant Common Information

Recall the example: X = (U, V), Y = (V,W)withU LV 1L W

Cw(X;Y) =H(V) and C(X;Y — Z) = (V; Z)
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Onto Relevant Common Information

Recall the example: X = (U, V), Y = (V,W)withU LV 1L W

Cw(X;Y)=H(V)and C(X;Y — 2)=1(V;2)

Task: Generalize this notion of relevant common information
following a suitable operational approach

20



An Operational Approach Towards C(X;Y — 7)

Instead of
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An Operational Approach Towards C(X;Y — 7)

. consider the setup
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An Operational Approach Towards C(X;Y — 7)

. consider the setup

~
Wy a(*n n
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For a given PMF Pxy 7 we require that Decoder 1 and 2 produce
X™ and Y™ that, together with Z™ ~ IID Py, coordinate Pxyz
in the weak sense that

@(HXnYnzn || PXYZ) — 0

where IIxnynzn denotes the empirical distribution of (X™, Y™, Z™)
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An Operational Approach Towards C(X;Y — 7)

Define the common information C(X;Y — Z) between X and Y
relevant to Z as the least common rate Ry that allows for weak
coordination of Pxy z subject to the no-excess-rate constraint

Ry+Ri+ Ry =1(X,Y;2)

22



Weak Coordination on the Gray-Wyner Network

Theorem (Graczyk, Lapidoth, and Wigger, 2022)
The set of all rate triples (Rp, R1, R2) that allow for
weak coordination of Pxyz subject to the no-excess-
rate constraint Ry + Ry + Ry = [(X,Y; Z) is given by

Ro > 1(Z; W)
U (Ro, Ri,Ry): Ro+ Ry > 1(Z; X, W)
Pwixyz: Ro+ Ry > 1(Z;Y, W)

X—->W-=Y
W—(X,Y)—Z

23



An Operational Approach Towards C(X;Y — 7)

Corollary (Graczyk, Lapidoth, and Wigger, 2022)

CX;Y —2) = min  [(Z; W)
Pwixyz:
X=W=Y
W—=(X,Y)=Z

24



Proof

1. By the theorem Ry > C(X;Y — Z)

25



Proof

1. By the theorem Ry > C(X;Y — Z)

2. Fix some Py xyz that achieves the minimum in C(X;Y — Z2)
and let

Ry=1(Z;W)
Ri=1(Z; X, W) — I(Z; W)

25



Proof

1. By the theorem Ry > C(X;Y — Z)

2. Fix some Py xyz that achieves the minimum in C(X;Y — Z2)
and let

Ry=1(Z;W)
R =1Z; X,W)—-UZ;W)
3. Show that we can set
Ry =1(Z; Y, W) -1Z; W)+ A

for some A > 0 so that Ry + R1 + Ry = [(X,Y; Z)

25



Proof
This is equivalent to showing that

I(Z: X, W)+ (Z;Y,W) = 1(Z; W) < I(X,Y; Z)

26



Proof
This is equivalent to showing that

I(Z: X, W)+ (Z;Y,W) = 1(Z; W) < I(X,Y; Z)

Indeed, because X - W — Y and W — (X,Y) — Z,
I(Z; X, W)+ 1(Z,Y,W) — 1(Z; W)
=1(Z; X | W)+ 1(Z;Y,V)
=H(X |W)-HX | W,2)+1(Z;Y, W)
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Proof
This is equivalent to showing that

I(Z: X, W)+ (Z;Y,W) = 1(Z; W) < I(X,Y; Z)

Indeed, because X - W — Y and W — (X,Y) — Z,
I(Z; X, W)+ 1(Z,Y,W) — 1(Z; W)
=1(Z; X | W)+ 1(Z;Y,V)
=H(X |W)-HX | W,2)+1(Z;Y, W)
<H(X | W) - H(X | W,Y, Z) + 1(Z;Y, W)

26



Proof
This is equivalent to showing that

W(Z: X, W)+ 1(Z; Y, W) = 1(Z; W) < I(X,Y; Z)

Indeed, because X — W — Y and W — (X,Y) — Z,

(Z: X, W)+ 1(Z;Y,W) = [(Z; W)
=U(Z; X |W)+1(Z;Y,W)

—HX |W)-H(X | W, 2)+ 1(Z;Y,WV)
<H(X |W)-H(X | WY, Z) + 1(Z,Y, W)
—H(X |W,Y)=H(X | WY, Z) + (Z,Y, W)
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Proof
This is equivalent to showing that

I(Z: X, W)+ (Z;Y,W) = 1(Z; W) < I(X,Y; Z)

Indeed, because X - W — Y and W — (X,Y) — Z,

(Z: X, W)+ 1(Z;Y,W) = [(Z; W)

=1(Z; X |W)+1(Z;Y,W)

—HX |W)-H(X | W, 2)+ 1(Z;Y,WV)
<H(X |W)-H(X | WY, Z) + 1(Z,Y, W)
—H(X |W,Y) - H(X | WY, Z) + 1(Z,Y, W)
=1(Z; X |W,Y) + 1(Z;Y,W)

=1(Z; X,Y,W)

26



Proof
This is equivalent to showing that

I(Z: X, W)+ (Z;Y,W) = 1(Z; W) < I(X,Y; Z)

Indeed, because X - W — Y and W — (X,Y) — Z,

(Z: X, W)+ 1(Z;Y,W) = [(Z; W)

=1(Z; X |W)+1(Z;Y,W)

—HX |W)-H(X | W, 2)+ 1(Z;Y,WV)
<H(X |W)-H(X | WY, Z) + 1(Z,Y, W)
—H(X |W,Y) - H(X | WY, Z) + 1(Z,Y, W)
=1(Z; X |W,Y) + 1(Z;Y,W)

=1(Z; X,Y,W)

=1(Z; X,Y)
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Two Follow-Up Questions

1. What result do we obtain in the strong coordination problem?
(instead of IIxnynzn — Pxyz require that Pxnynzn — P%y. )

2. How to systematically agree on a definition for
relevant common information?
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Thank you for your attention!
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