Variations on Common Information

Robert Graczyk

January 25, 2023

Wyner's Common Information

Definition 1 (Wyner 1975)

The common information $C_1(X;Y)$ between X and Y is the least common rate R_0 under which almost-lossless compression of (X^n, Y^n) is possible subject to the no-excess-rate constraint

$$R_0 + R_1 + R_2 = \mathsf{H}(X, Y)$$

Wyner's Common Information

Definition 2 (Wyner 1975)

The common information $C_2(X;Y)$ between X and Y is the least common rate R_W under which simulation of (X^n,Y^n) is possible in the sense that

$$\frac{1}{n} \mathscr{D}(P_{X^n Y^n} \,\|\, P_{XY}^n) \to 0$$

Wyner's Common Information

Theorem (Wyner 1975) $C_1(X;Y) = C_2(X;Y) = C_W(X;Y)$ where $C_W(X;Y) \triangleq \min_{\substack{P_W|XY:\\X \to W \to Y}} I(W;X,Y)$

Recall the Rényi entropy of $X \sim P_X$

$$\mathsf{H}_{\alpha}(X) = \frac{1}{1-\alpha} \log \left(\sum_{x} P_X(x)^{\alpha} \right), \quad \alpha \in \mathbb{R} \setminus \{1\}$$

Recall the Rényi entropy of $X \sim P_X$

$$\mathsf{H}_{\alpha}(X) = \frac{1}{1-\alpha} \log \left(\sum_{x} P_{X}(x)^{\alpha} \right), \quad \alpha \in \mathbb{R} \setminus \{1\}$$

The Rényi entropy generalizes Shannon's

$$\mathsf{H}(X) = \lim_{\alpha \to 1} \mathsf{H}_{\alpha}(X)$$

Recall the Rényi entropy of $X \sim P_X$

$$\mathsf{H}_{\alpha}(X) = \frac{1}{1-\alpha} \log \left(\sum_{x} P_X(x)^{\alpha} \right), \quad \alpha \in \mathbb{R} \setminus \{1\}$$

The Rényi entropy generalizes Shannon's

$$\mathsf{H}(X) = \lim_{\alpha \to 1} \mathsf{H}_{\alpha}(X)$$

Task: Find a Rényi-type common information measure $C_{\alpha}(X;Y)$

$$C_{W}(X;Y) = \lim_{\alpha \to 1} C_{\alpha}(X;Y)$$

When X = (U, V) and Y = (V, W) with $U \perp V \perp W$ $C_W(X; Y) = H(V)$

When X = (U, V) and Y = (V, W) with $U \perp V \perp W$ $C_W(X; Y) = H(V)$

Assume now that Z is independent of U and W but not of VThe common information between X and Y relevant to Z is

$$\mathcal{C}(X;Y\to Z)=\mathcal{I}(V;Z)$$

When X = (U, V) and Y = (V, W) with $U \perp V \perp W$ $C_W(X; Y) = H(V)$

Assume now that Z is independent of U and W but not of V. The common information between X and Y relevant to Z is

$$\mathcal{C}(X; Y \to Z) = \mathcal{I}(V; Z)$$

Task: Generalize this notion of relevant common information

An Operational Approach Towards $C_{\alpha}(X;Y)$

Yu and Tan suggested to replace the criterion

$$\frac{1}{n} \mathscr{D}(P_{X^n Y^n} \,\|\, P_{XY}^n) \to 0$$

in Wyner's definition of $C_2(X;Y)$ with

$$\frac{1}{n} \mathscr{D}_{\alpha}(P_{X^n Y^n} \| P_{XY}^n) \to 0, \quad \alpha \in \mathbb{R}$$

where

$$\mathscr{D}_{\alpha}(P \parallel Q) = \frac{1}{\alpha - 1} \log \left(\sum_{x} \frac{P(x)^{\alpha}}{Q(x)^{\alpha - 1}} \right), \quad \alpha \in \mathbb{R} \setminus \{1\}$$

An Operational Approach Towards $C_{\alpha}(X;Y)$

Theorem (Yu and Tan, 2018)

$$C_{\alpha}^{YT}(X;Y) = \begin{cases} 0 & \text{when } \alpha = 0 \\ C_{W}(X;Y) & \text{when } \alpha \in (0,1] \end{cases}$$
Yu and Tan also obtained bounds on $C_{\alpha}^{YT}(X;Y)$ for $\alpha \in (1,2]$

A Different Operational Approach Towards $C_{\alpha}(X;Y)$

We propose a different approach based on

A Different Operational Approach Towards $C_{\alpha}(X;Y)$

Instead of . . .

A Different Operational Approach Towards $C_{\alpha}(X;Y)$

... consider the setup

The rate triple (R_0, R_1, R_2) is (E_X, E_Y) -achievable if there exists a joint encoder and guessing strategies for X^n and Y^n that satisfy

$$\lim_{n \to \infty} \frac{1}{n} \log \mathsf{E}[G(X^n \mid M_0, M_1)^{\rho}] \le E_X$$
$$\lim_{n \to \infty} \frac{1}{n} \log \mathsf{E}[G(Y^n \mid M_0, M_2)^{\rho}] \le E_Y$$

Theorem (Graczyk and Lapidoth, 2021) The set of all (E_X, E_Y) -achievable rate triples (R_0, R_1, R_2) is given by $\bigcap \bigcup \{(R_0, R_1, R_2):$ $Q_{XY} Q_{W|XY}$ $R_0 \geq I_O(W; X, Y)$ $R_1 \ge \mathsf{H}_Q(X \mid W) - \frac{1}{\rho} \big(E_X + \mathscr{D}(Q_{XY} \parallel P_{XY}) \big)$ $R_2 \ge \mathsf{H}_Q(Y \mid W) - \frac{1}{o} \left(E_Y + \mathscr{D}(Q_{XY} \parallel P_{XY}) \right) \right\}$

```
Theorem (Graczyk and Lapidoth, 2021)
The set of all (E_X, E_Y)-achievable rate triples (R_0, R_1, R_2)
is given by
  \bigcap \bigcup \{(R_0, R_1, R_2):
  Q_{XY} Q_{W|XY}
                     R_0 \geq I_O(W; X, Y)
                     R_1 \ge \mathsf{H}_Q(X \mid W) - \frac{1}{\rho} (E_X + \mathscr{D}(Q_{XY} \parallel P_{XY}))
                     R_2 \ge \mathsf{H}_Q(Y \mid W) - \frac{1}{2} (E_Y + \mathscr{D}(Q_{XY} \parallel P_{XY}))
```

Red: Gray-Wyner Source Coding Region

Proof Outline

- 1. Assume (X^n, Y^n) are equiprobable over a type class $\mathcal{T}^{(n)}(Q_{XY})$ (rather than IID according to P_{XY})
- 2. Find the (E_X, E_Y) -achievable rate triples under that assumption (direct part via type covering, converse mostly standard)
- 3. Account for the assumption via the factor $2^{-n\mathscr{D}(Q_{XY} \parallel P_{XY})}$

An Operational Approach Towards $C_{\tilde{\rho}}(X;Y)$

Define the Rényi common information $C_{\tilde{\rho}}(X;Y)$ of order $\tilde{\rho} = 1/(1+\rho)$ between X and Y as the least common rate R_0 under which

$$\lim_{n \to \infty} \frac{1}{n} \log \mathsf{E}[G(X^n \mid M_0, M_1)^{\rho}] = 0$$

and

$$\lim_{n \to \infty} \frac{1}{n} \log \mathsf{E}[G(Y^n \mid M_0, M_2)^{\rho}] = 0$$

with (R_0, R_1, R_2) obeying the no-excess-rate constraint

An Operational Approach Towards $C_{\tilde{\rho}}(X;Y)$

Define the Rényi common information $C_{\tilde{\rho}}(X;Y)$ of order $\tilde{\rho} = 1/(1+\rho)$ between X and Y as the least common rate R_0 under which

$$\lim_{n \to \infty} \frac{1}{n} \log \mathsf{E}[G(X^n \mid M_0, M_1)^{\rho}] = \mathbf{0}$$

and

$$\lim_{n \to \infty} \frac{1}{n} \log \mathsf{E}[G(Y^n \mid M_0, M_2)^{\rho}] = \mathbf{0}$$

with (R_0, R_1, R_2) obeying the no-excess-rate constraint

We shall focus on the (0,0)-achievable rate triples (R_0, R_1, R_2)

Least Sum Rate in the Gray-Wyner Guessing Problem

To incorporate the no-excess-rate constraint we need the least (0,0)-achievable sum rate

Least Sum Rate in the Gray-Wyner Guessing Problem

To incorporate the no-excess-rate constraint we need the least (0,0)-achievable sum rate

Because

 (R_0, R_1, R_2) is achievable $\implies (R_0 + R_1 + R_2, 0, 0)$ is achievable

Least Sum Rate in the Gray-Wyner Guessing Problem

To incorporate the no-excess-rate constraint we need the least (0, 0)-achievable sum rate

Because

 (R_0, R_1, R_2) is achievable $\implies (R_0 + R_1 + R_2, 0, 0)$ is achievable

the least sum rate equals the least R_0 in

$$\bigcap_{Q_{XY}} \bigcup_{Q_{W|XY}} \begin{cases} R_0 \ge I_Q(W; X, Y) \\ 0 \ge H_Q(X \mid W) - \frac{1}{\rho} (\mathbf{0} + \mathscr{D}(Q_{XY} \parallel P_{XY})) \\ 0 \ge H_Q(Y \mid W) - \frac{1}{\rho} (\mathbf{0} + \mathscr{D}(Q_{XY} \parallel P_{XY})) \end{cases}$$

$$\begin{array}{l} \mbox{Lemma (Graczyk and Lapidoth, 2021)} \\ \mbox{The least } (0,0)\mbox{-achievable sum rate } R^*_{\Sigma} \mbox{ equals} \\ & \sup_{Q_{XY}} \ \inf_{Q_{W|XY}} \ \inf_{\substack{\mathsf{H}_Q(X \mid W) \leq \mathscr{D}(Q_{XY} \parallel P_{XY})/\rho \\ \mathsf{H}_Q(Y \mid W) \leq \mathscr{D}(Q_{XY} \parallel P_{XY})/\rho}} \ \mathrm{I}_Q(W;X,Y) \end{array}$$

Two observations:

- 1. In general $R^*_{\Sigma} < \mathsf{H}_{\tilde{\rho}}(X, Y)$
- 2. Because $\operatorname{argmax} Q_{XY} \to P_{XY}$ as $\rho \to 0$

$$\lim_{\rho \to 0} R_{\Sigma}^* = \mathsf{H}_P(X, Y)$$

Theorem (Graczyk and Lapidoth, 2021)

w

The Rényi common information $\mathcal{C}_{\tilde{\rho}}(X;Y)$ of order $\tilde{\rho}$ between X and Y equals

$$\sup_{Q_{XY}} \inf_{\substack{(\mathsf{H}_Q(X \mid W) - \mathscr{D}(Q_{XY} \parallel P_{XY})/\rho)^+ \\ Q_{W \mid XY}: + (\mathsf{H}_Q(Y \mid W) - \mathscr{D}(Q_{XY} \parallel P_{XY})/\rho)^+ \\ + I_Q(W; X, Y) \le R_{\Sigma}^*}} I_Q(W; X, Y)$$
here $(\cdot)^+ = \max(\cdot, 0)$

A final observation about $C_{\tilde{\rho}}(X;Y)$:

Because $\operatorname{argmax} Q_{XY} \to P_{XY}$ and $R_{\Sigma}^* \to H_P(X,Y)$ as $\rho \to 0$

$$(\mathsf{H}_Q(X \mid W) - \mathscr{D}(Q_{XY} \parallel P_{XY})/\rho)^+ + (\mathsf{H}_Q(Y \mid W) - \mathscr{D}(Q_{XY} \parallel P_{XY})/\rho)^+ + \mathsf{I}_Q(W; X, Y) \le R_{\Sigma}^*$$

is about equivalent to

 $\mathsf{H}_P(X \mid W) + \mathsf{H}_P(Y \mid W) + \mathsf{I}_P(W; X, Y) \le \mathsf{H}_P(X, Y)$

A final observation about $C_{\tilde{\rho}}(X;Y)$:

Because $\operatorname{argmax} Q_{XY} \to P_{XY}$ and $R^*_{\Sigma} \to H_P(X,Y)$ as $\rho \to 0$

$$(\mathsf{H}_Q(X \mid W) - \mathscr{D}(Q_{XY} \parallel P_{XY})/\rho)^+ + (\mathsf{H}_Q(Y \mid W) - \mathscr{D}(Q_{XY} \parallel P_{XY})/\rho)^+ + \mathsf{I}_Q(W; X, Y) \le R_{\Sigma}^*$$

is about equivalent to

 $\mathsf{H}_P(X \mid W) + \mathsf{H}_P(Y \mid W) + \mathsf{I}_P(W; X, Y) \le \mathsf{H}_P(X, Y)$

A final observation about $C_{\tilde{\rho}}(X;Y)$:

Because $\operatorname{argmax} Q_{XY} \to P_{XY}$ and $R_{\Sigma}^* \to H_P(X,Y)$ as $\rho \to 0$

$$(\mathsf{H}_Q(X \mid W) - \mathscr{D}(Q_{XY} \parallel P_{XY})/\rho)^+ + (\mathsf{H}_Q(Y \mid W) - \mathscr{D}(Q_{XY} \parallel P_{XY})/\rho)^+ + \mathsf{I}_Q(W; X, Y) \le R_{\Sigma}^*$$

is about equivalent to

 $\mathsf{H}_P(X \mid W) + \mathsf{H}_P(Y \mid W) + \mathsf{I}_P(W; X, Y) \le \mathsf{H}_P(X, Y)$

A final observation about $C_{\tilde{\rho}}(X;Y)$:

Because $\operatorname{argmax} Q_{XY} \to P_{XY}$ and $R^*_{\Sigma} \to H_P(X,Y)$ as $\rho \to 0$

$$(\mathsf{H}_Q(X \mid W) - \mathscr{D}(Q_{XY} \parallel P_{XY})/\rho)^+ + (\mathsf{H}_Q(Y \mid W) - \mathscr{D}(Q_{XY} \parallel P_{XY})/\rho)^+ + \mathbf{I}_Q(W; X, Y) \le R_{\Sigma}^*$$

is about equivalent to

 $\mathsf{H}_P(X \mid W) + \mathsf{H}_P(Y \mid W) + \mathsf{I}_P(W; X, Y) \le \mathsf{H}_P(X, Y)$

A final observation about $C_{\tilde{\rho}}(X;Y)$:

Because $\operatorname{argmax} Q_{XY} \to P_{XY}$ and $R^*_{\Sigma} \to H_P(X,Y)$ as $\rho \to 0$

$$(\mathsf{H}_Q(X \mid W) - \mathscr{D}(Q_{XY} \parallel P_{XY})/\rho)^+ + (\mathsf{H}_Q(Y \mid W) - \mathscr{D}(Q_{XY} \parallel P_{XY})/\rho)^+ + \mathsf{I}_Q(W; X, Y) \le \mathbb{R}^*_{\Sigma}$$

is about equivalent to

 $\mathsf{H}_P(X \mid W) + \mathsf{H}_P(Y \mid W) + \mathsf{I}_P(W; X, Y) \le \mathsf{H}_P(X, Y)$

Because

$$\begin{aligned} \mathsf{H}_P(X \mid W) + \mathsf{H}_P(Y \mid W) + \mathsf{I}_P(W; X, Y) &\leq \mathsf{H}_P(W; X, Y) \\ \iff \mathsf{H}_P(X \mid W) + \mathsf{H}_P(Y \mid W) &\leq \mathsf{H}_P(X, Y \mid W) \\ \iff X \to W \to Y \text{ under } P \end{aligned}$$

we indeed have

$$\lim_{\rho \to 0} \mathcal{C}_{\tilde{\rho}}(X;Y) = \min_{\substack{P_{W|XY}:\\X \to W \to Y}} \mathcal{I}_{P}(W;X,Y) = \mathcal{C}_{W}(X;Y)$$

Three Follow-Up Questions

- 1. Can $C_{\tilde{\rho}}(X;Y)$ be expressed in terms of $H_{\tilde{\rho}}(\cdot)$, $\mathscr{D}_{\tilde{\rho}}(\cdot \| \cdot)$, and $I_{\tilde{\rho}}(\cdot | \cdot)$?
- 2. Can we find a suitable operational definition for $C_{\alpha}(X;Y)$ when $\alpha \notin [0,1]$?
- 3. How to systematically agree on a Rényi extension of $C_W(X;Y)$? Proposition: via axiomization of $C_W(X;Y)$

Onto Relevant Common Information

Recall the example: X=(U,V), Y=(V,W) with $U\perp\hspace{-0.15cm}\perp V\perp\hspace{-0.15cm}\perp W$

$$C_W(X;Y) = H(V)$$
 and $C(X;Y \rightarrow Z) = I(V;Z)$

Onto Relevant Common Information

Recall the example: X = (U, V), Y = (V, W) with $U \perp V \perp W$ $C_W(X; Y) = H(V)$ and $C(X; Y \rightarrow Z) = I(V; Z)$

Task: Generalize this notion of relevant common information following a suitable operational approach

Instead of . . .

... consider the setup

... consider the setup

For a given PMF P_{XYZ} we require that Decoder 1 and 2 produce X^n and Y^n that, together with $Z^n \sim \text{IID } P_Z$, coordinate P_{XYZ} in the weak sense that

 $\mathscr{D}(\Pi_{X^nY^nZ^n} \,\|\, P_{XYZ}) \to 0$

where $\Pi_{X^nY^nZ^n}$ denotes the empirical distribution of (X^n, Y^n, Z^n)

Define the common information $C(X; Y \to Z)$ between X and Y relevant to Z as the least common rate R_0 that allows for weak coordination of P_{XYZ} subject to the no-excess-rate constraint

$$R_0 + R_1 + R_2 = I(X, Y; Z)$$

Theorem (Graczyk, Lapidoth, and Wigger, 2022) The set of all rate triples (R_0, R_1, R_2) that allow for weak coordination of P_{XYZ} subject to the no-excessrate constraint $R_0 + R_1 + R_2 = I(X, Y; Z)$ is given by

$$\bigcup_{\substack{P_{W|XYZ}:\\X\to W\to Y\\W\to(X,Y)\to Z}} \left\{ (R_0, R_1, R_2) \colon R_0 + R_1 \ge \mathbf{I}(Z; X, W) \\ R_0 + R_2 \ge \mathbf{I}(Z; Y, W) \right\}$$

Corollary (Graczyk, Lapidoth, and Wigger, 2022)

$$C(X; Y \rightarrow Z) = \min_{\substack{P_{W|XYZ}:\\X \rightarrow W \rightarrow Y\\W \rightarrow (X,Y) \rightarrow Z}} I(Z; W)$$

1. By the theorem $R_0 \ge C(X; Y \to Z)$

- 1. By the theorem $R_0 \ge C(X; Y \to Z)$
- 2. Fix some $P_{W|XYZ}$ that achieves the minimum in ${\rm C}(X;Y\to Z)$ and let

$$R_0 = I(Z; W)$$

$$R_1 = I(Z; X, W) - I(Z; W)$$

- 1. By the theorem $R_0 \ge C(X; Y \to Z)$
- 2. Fix some $P_{W|XYZ}$ that achieves the minimum in ${\rm C}(X;Y\to Z)$ and let

$$R_0 = I(Z; W)$$

$$R_1 = I(Z; X, W) - I(Z; W)$$

3. Show that we can set

$$R_2 = I(Z; Y, W) - I(Z; W) + \Delta$$

for some $\Delta \geq 0$ so that $R_0 + R_1 + R_2 = I(X,Y;Z)$

This is equivalent to showing that

 $\mathrm{I}(Z;X,W) + \mathrm{I}(Z;Y,W) - \mathrm{I}(Z;W) \leq \mathrm{I}(X,Y;Z)$

This is equivalent to showing that

 $\mathbf{I}(Z;X,W) + \mathbf{I}(Z;Y,W) - \mathbf{I}(Z;W) \le \mathbf{I}(X,Y;Z)$

$$\begin{split} \mathrm{I}(Z;X,W) + \mathrm{I}(Z;Y,W) &- \mathrm{I}(Z;W) \\ &= \mathrm{I}(Z;X\mid W) + \mathrm{I}(Z;Y,W) \\ &= \mathrm{H}(X\mid W) - \mathrm{H}(X\mid W,Z) + \mathrm{I}(Z;Y,W) \end{split}$$

This is equivalent to showing that

 $\mathbf{I}(Z;X,W) + \mathbf{I}(Z;Y,W) - \mathbf{I}(Z;W) \le \mathbf{I}(X,Y;Z)$

$$\begin{split} I(Z; X, W) + I(Z; Y, W) &- I(Z; W) \\ &= I(Z; X \mid W) + I(Z; Y, W) \\ &= H(X \mid W) - H(X \mid W, Z) + I(Z; Y, W) \\ &\leq H(X \mid W) - H(X \mid W, Y, Z) + I(Z; Y, W) \end{split}$$

This is equivalent to showing that

 $\mathbf{I}(Z;X,W) + \mathbf{I}(Z;Y,W) - \mathbf{I}(Z;W) \le \mathbf{I}(X,Y;Z)$

$$\begin{split} \mathrm{I}(Z;X,W) + \mathrm{I}(Z;Y,W) &- \mathrm{I}(Z;W) \\ &= \mathrm{I}(Z;X \mid W) + \mathrm{I}(Z;Y,W) \\ &= \mathrm{H}(X \mid W) - \mathrm{H}(X \mid W,Z) + \mathrm{I}(Z;Y,W) \\ &\leq \mathrm{H}(X \mid W) - \mathrm{H}(X \mid W,Y,Z) + \mathrm{I}(Z;Y,W) \\ &= \mathrm{H}(X \mid W,Y) - \mathrm{H}(X \mid W,Y,Z) + \mathrm{I}(Z;Y,W) \end{split}$$

This is equivalent to showing that

 $\mathbf{I}(Z;X,W) + \mathbf{I}(Z;Y,W) - \mathbf{I}(Z;W) \le \mathbf{I}(X,Y;Z)$

$$\begin{split} \mathrm{I}(Z;X,W) + \mathrm{I}(Z;Y,W) &- \mathrm{I}(Z;W) \\ &= \mathrm{I}(Z;X \mid W) + \mathrm{I}(Z;Y,W) \\ &= \mathrm{H}(X \mid W) - \mathrm{H}(X \mid W,Z) + \mathrm{I}(Z;Y,W) \\ &\leq \mathrm{H}(X \mid W) - \mathrm{H}(X \mid W,Y,Z) + \mathrm{I}(Z;Y,W) \\ &= \mathrm{H}(X \mid W,Y) - \mathrm{H}(X \mid W,Y,Z) + \mathrm{I}(Z;Y,W) \\ &= \mathrm{I}(Z;X \mid W,Y) + \mathrm{I}(Z;Y,W) \\ &= \mathrm{I}(Z;X,Y,W) \end{split}$$

This is equivalent to showing that

 $\mathbf{I}(Z;X,W) + \mathbf{I}(Z;Y,W) - \mathbf{I}(Z;W) \le \mathbf{I}(X,Y;Z)$

$$\begin{split} \mathrm{I}(Z;X,W) + \mathrm{I}(Z;Y,W) &- \mathrm{I}(Z;W) \\ &= \mathrm{I}(Z;X \mid W) + \mathrm{I}(Z;Y,W) \\ &= \mathrm{H}(X \mid W) - \mathrm{H}(X \mid W,Z) + \mathrm{I}(Z;Y,W) \\ &\leq \mathrm{H}(X \mid W) - \mathrm{H}(X \mid W,Y,Z) + \mathrm{I}(Z;Y,W) \\ &= \mathrm{H}(X \mid W,Y) - \mathrm{H}(X \mid W,Y,Z) + \mathrm{I}(Z;Y,W) \\ &= \mathrm{I}(Z;X \mid W,Y) + \mathrm{I}(Z;Y,W) \\ &= \mathrm{I}(Z;X,Y,W) \\ &= \mathrm{I}(Z;X,Y) \end{split}$$

Two Follow-Up Questions

- 1. What result do we obtain in the strong coordination problem? (instead of $\Pi_{X^nY^nZ^n} \rightarrow P_{XYZ}$ require that $P_{X^nY^nZ^n} \rightarrow P_{XYZ}^n$)
- 2. How to systematically agree on a definition for relevant common information?

Thank you for your attention!