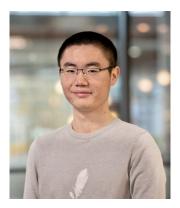
Soft Guessing Under Logarithmic Loss

Hamdi Joudeh ICT Lab Eindhoven University of Technology (TU/e)

Information Theory and Tapas Workshop Madrid, Jan. 2023 Joint work with Han Wu (TU/e)



Guessing problem (Massey'94, Arikan'96)

A r.v. X is drawn from a finite set $\mathcal{X} = \{1, 2, \dots, M\}$ according to pmf P. Assume $P(1) \ge P(2) \ge \dots \ge P(M) > 0$.

A guesser seeks to determine X through a sequence of inquiries

"is
$$X = x_1$$
?"
"is $X = x_2$?"
:

until the answer is "yes".

Guessing problem (Massey'94, Arikan'96)

A r.v. X is drawn from a finite set $\mathcal{X} = \{1, 2, \dots, M\}$ according to pmf P. Assume $P(1) \ge P(2) \ge \dots \ge P(M) > 0$.

A guesser seeks to determine X through a sequence of inquiries

"is
$$X = x_1$$
?"
"is $X = x_2$?"
:

until the answer is "yes".

Guessing function: $G(x) \triangleq$ number of required guesses when X = xObject of interest: distribution of G(X)

Guessing problem (Massey'94, Arikan'96)

A r.v. X is drawn from a finite set $\mathcal{X} = \{1, 2, \dots, M\}$ according to pmf P. Assume $P(1) \ge P(2) \ge \dots \ge P(M) > 0$.

A guesser seeks to determine X through a sequence of inquiries

"is
$$X = x_1$$
?"
"is $X = x_2$?"
:

until the answer is "yes".

Guessing function: $G(x) \triangleq$ number of required guesses when X = xObject of interest: distribution of G(X)

Motivation/Applications: security (password attacks), channel-coding (decoding effort), betting games, database search, etc.

Guessing moments

Guessing moments: The ρ -th guessing moment ($\rho > 0$) is defined as

$$\mathcal{M}_X(\rho) \triangleq \min_G \mathbb{E}\left[G(X)^{\rho}\right]$$

Guessing moments

Guessing moments: The ρ -th guessing moment ($\rho > 0$) is defined as $\mathcal{M}_X(\rho) \triangleq \min_{C} \mathbb{E} \left[G(X)^{\rho} \right]$

The obvious guessing strategy simultaneously minimizes all moments

Theorem (Arikan'96). The ρ -th guessing moment ($\rho > 0$) satisfies $(1 + \log M)^{-\rho} \exp\left(\rho H_{\frac{1}{1+\rho}}(P)\right) \le \mathcal{M}_X(\rho) \le \exp\left(\rho H_{\frac{1}{1+\rho}}(P)\right)$

where the Rényi entropy of order $\alpha \in (0,1) \cup (1,\infty)$ is defined as

$$H_{\alpha}(P) \triangleq \frac{1}{1-\alpha} \log\left(\sum_{x \in \mathcal{X}} P(x)^{\alpha}\right)$$

and remaining orders by cont. extension.

Guessing exponents

Asymptotics: Guessing a sequence $X^n \triangleq (X_1, \ldots, X_n)$ i.i.d. $\sim P$

Corollary (Arikan'96). The ρ -th guessing exponent is given by

$$\lim_{n \to \infty} \frac{1}{n} \log \mathcal{M}_{X^n}(\rho) = \rho H_{\frac{1}{1+\rho}}(P)$$

for large n, we have $\mathcal{M}_{X^n}(\rho) \approx \exp\left(n\rho H_{\frac{1}{1+\rho}}(P)\right)$

Guessing exponents

Asymptotics: Guessing a sequence $X^n \triangleq (X_1, \ldots, X_n)$ i.i.d. $\sim P$

Corollary (Arikan'96). The ρ -th guessing exponent is given by

$$\lim_{n \to \infty} \frac{1}{n} \log \mathcal{M}_{X^n}(\rho) = \rho H_{\frac{1}{1+\rho}}(P)$$

for large n, we have $\mathcal{M}_{X^n}(\rho) \approx \exp\left(n\rho H_{\frac{1}{1+\rho}}(P)\right)$

Why guessing moments/exponents?

• Tail probability. Chernoff bound:

$$\mathbb{P}\left[G(X^n) \ge \exp(n\gamma)\right] \le \inf_{\rho > 0} \mathbb{E}\left[G(X^n)^{\rho}\right] e^{-n\rho\gamma}$$
$$= \exp\left(-n\sup_{\rho > 0} \left\{\rho\gamma - \frac{1}{n}\log\mathbb{E}\left[G(X^n)^{\rho}\right]\right\}\right)$$

Lossy guessing

The goal is to guess a reconstruction $\hat{x}\in \hat{\mathcal{X}}$ of the r.v. X

- Loss/distortion measure: $\ell(x, \hat{x}) \ge 0$
- Lossy guessing strategy: sequence $(\hat{x}_1, \hat{x}_2, \dots, \hat{x}_N)$
- Stopping: $\ell(x, \hat{x}_u) \leq d$ for some acceptable $d \geq 0$, i.e.

"is
$$\ell(x, \hat{x}_1) \leq d$$
?"
"is $\ell(x, \hat{x}_2) \leq d$?"

:

until the answer is "yes".

Lossy guessing

The goal is to guess a reconstruction $\hat{x} \in \hat{\mathcal{X}}$ of the r.v. X

- Loss/distortion measure: $\ell(x, \hat{x}) \ge 0$
- Lossy guessing strategy: sequence $(\hat{x}_1, \hat{x}_2, \dots, \hat{x}_N)$
- Stopping: $\ell(x, \hat{x}_u) \leq d$ for some acceptable $d \geq 0$, i.e.

"is
$$\ell(x, \hat{x}_1) \leq d$$
?"
"is $\ell(x, \hat{x}_2) \leq d$?"

:

until the answer is "yes".

- *d*-admissibility: for every $x \in \mathcal{X}$, $\ell(x, \hat{x}_u) \leq d$ for some \hat{x}_u
- Guessing function:

$$G(x) \triangleq \text{smallest } u \in \{1, \dots, N\} \text{ s.t. } \ell(x, \hat{x}_u) \leq d$$

• Guessing moment: $\mathcal{M}_X(d,\rho) \triangleq \min_G \mathbb{E}[G(X)^{\rho}]$

Guessing subject to distortion (Arikan-Merhav'98)

Asymptotics: The goal is to guess a reconstruction $\hat{x}^n \in \hat{\mathcal{X}}^n$ of an i.i.d. sequence X^n , subject to an additive distortion

$$\ell(x^n, \hat{x}^n) = \frac{1}{n} \sum_{i=1}^n \ell(x_i, \hat{x}_i)$$

Guessing subject to distortion (Arikan-Merhav'98)

Asymptotics: The goal is to guess a reconstruction $\hat{x}^n \in \hat{\mathcal{X}}^n$ of an i.i.d. sequence X^n , subject to an additive distortion

$$\ell(x^n, \hat{x}^n) = \frac{1}{n} \sum_{i=1}^n \ell(x_i, \hat{x}_i)$$

Theorem (Arikan-Merhav'98). ρ -th guessing exponent is given by

$$\lim_{n \to \infty} \frac{1}{n} \log \mathcal{M}_{X^n}(d, \rho) = \max_Q \left\{ \rho R(Q, d) - D(Q \| P) \right\}$$

where R(Q, d) is the rate-distortion function of DMS Q

Guessing subject to distortion (Arikan-Merhav'98)

Asymptotics: The goal is to guess a reconstruction $\hat{x}^n \in \hat{\mathcal{X}}^n$ of an i.i.d. sequence X^n , subject to an additive distortion

$$\ell(x^n, \hat{x}^n) = \frac{1}{n} \sum_{i=1}^n \ell(x_i, \hat{x}_i)$$

Theorem (Arikan-Merhav'98). ρ -th guessing exponent is given by

$$\lim_{n \to \infty} \frac{1}{n} \log \mathcal{M}_{X^n}(d, \rho) = \max_Q \left\{ \rho R(Q, d) - D(Q \| P) \right\}$$

where R(Q, d) is the rate-distortion function of DMS Q

• Under d = 0, we have R(Q, d) = H(Q) and

$$\max_{Q} \left\{ \rho H(Q) - D(Q \| P) \right\} = \rho H_{\frac{1}{1+\rho}}(P)$$

Soft guessing subject to logarithmic loss

Soft reconstruction and logarithmic loss

The goal is to guess a soft reconstruction \hat{P} of the r.v. X

- Soft reconstruction: pmf $\hat{P} \in \mathcal{P}(\mathcal{X})$
- Think of \hat{P} as a posterior for X (prior is P).

Soft reconstruction and logarithmic loss

The goal is to guess a soft reconstruction \hat{P} of the r.v. X

- Soft reconstruction: pmf $\hat{P} \in \mathcal{P}(\mathcal{X})$
- Think of \hat{P} as a posterior for X (prior is P).

Logarithmic loss: The loss of reconstructing x as \hat{P} is

$$\ell(x, \hat{P}) \triangleq \log \frac{1}{\hat{P}(x)}$$

 $\ell(x, \hat{P}) \geq 0$ with equality iff \hat{P} is a hard reconstruction of x

Soft reconstruction and logarithmic loss

The goal is to guess a soft reconstruction \hat{P} of the r.v. X

- Soft reconstruction: pmf $\hat{P} \in \mathcal{P}(\mathcal{X})$
- Think of \hat{P} as a posterior for X (prior is P).

Logarithmic loss: The loss of reconstructing x as \hat{P} is

$$\ell(x, \hat{P}) \triangleq \log \frac{1}{\hat{P}(x)}$$

 $\ell(x, \hat{P}) \geq 0$ with equality iff \hat{P} is a hard reconstruction of x

- Logarithmic loss = information: $\ell(x, \hat{P}) = \imath_{\hat{P}}(x)$
- For any $d \geq 0, \; x \text{ is } d\text{-covered by } \hat{P} \text{ whenever } \ell(x, \hat{P}) \leq d$

Soft guessing

Soft guessing strategy: sequence of pmfs $(\hat{P}_1, \hat{P}_2, \dots, \hat{P}_N)$. For an acceptable loss level d, soft guessing goes as:

$$\text{``is } \ell(x, \hat{P}_1) \leq d?" \\ \text{``is } \ell(x, \hat{P}_2) \leq d?" \\ \end{array}$$

÷

until the answer is "yes".

Soft guessing

Soft guessing strategy: sequence of pmfs $(\hat{P}_1, \hat{P}_2, \dots, \hat{P}_N)$. For an acceptable loss level d, soft guessing goes as:

$$\text{``is } \ell(x,\hat{P}_1) \leq d?'' \\ \text{``is } \ell(x,\hat{P}_2) \leq d?'' \\ \vdots \\ \end{array}$$

until the answer is "yes".

- *d*-admissibility: every $x \in \mathcal{X}$ is *d*-covered by at least one \hat{P}_u
- Guessing function:

 $G(x) \triangleq \text{smallest index } u \in \{1,2,\ldots,N\} \text{ s.t. } \ell(x,\hat{P}_u) \leq d$

- Any good strategy should have $N \leq M = |\mathcal{X}|$ (why?)
- For $d = \log M$, how many guesses do we need?

Exponent under logarithmic loss

Asymptotics: For i.i.d. sequences, take $\hat{P}^n(x^n) = \prod_{i=1}^n \hat{P}(x_i)$ and

$$\ell\left(x^{n}, \hat{P}^{n}\right) = \frac{1}{n} \sum_{i=1}^{n} \ell\left(x_{i}, \hat{P}\right) = \frac{1}{n} \sum_{i=1}^{n} \log \frac{1}{\hat{P}(x_{i})}$$

Exponent under logarithmic loss

Asymptotics: For i.i.d. sequences, take $\hat{P}^n(x^n) = \prod_{i=1}^n \hat{P}(x_i)$ and

$$\ell\left(x^{n}, \hat{P}^{n}\right) = \frac{1}{n} \sum_{i=1}^{n} \ell\left(x_{i}, \hat{P}\right) = \frac{1}{n} \sum_{i=1}^{n} \log \frac{1}{\hat{P}(x_{i})}$$

Rate-distortion function (Courtade-Weissman'14):

R(Q,d) = H(Q) - d

Exponent under logarithmic loss

Asymptotics: For i.i.d. sequences, take $\hat{P}^n(x^n) = \prod_{i=1}^n \hat{P}(x_i)$ and

$$\ell\left(x^{n}, \hat{P}^{n}\right) = \frac{1}{n} \sum_{i=1}^{n} \ell\left(x_{i}, \hat{P}\right) = \frac{1}{n} \sum_{i=1}^{n} \log \frac{1}{\hat{P}(x_{i})}$$

Rate-distortion function (Courtade-Weissman'14):

$$R(Q,d) = H(Q) - d$$

From (Arikan-Merhav'98) we get

$$\lim_{n \to \infty} \frac{1}{n} \log \mathcal{M}_{X^n}(d, \rho) = \max_Q \left\{ \rho H(Q) - \rho d - D(Q \| P) \right\}$$
$$= \rho H_{\frac{1}{1+\rho}}(P) - \rho d$$

Next: Single-shot version with no random selection (covering).

Main Result

Theorem. Define $d' \triangleq \log \lfloor \exp(d) \rfloor$. The following bounds hold $\mathcal{M}_X(d,\rho) \ge (1 + \log M)^{-\rho} \exp \left(\rho H_{\frac{1}{1+\rho}}(P) - \rho d'\right)$ and

$$\mathcal{M}_X(d,\rho) \le 1 + 2^{\rho} \exp\left(\rho H_{\frac{1}{1+\rho}}(P) - \rho d'\right)$$

Main Result

Theorem. Define $d' \triangleq \log \lfloor \exp(d) \rfloor$. The following bounds hold $\mathcal{M}_X(d,\rho) \ge (1 + \log M)^{-\rho} \exp\left(\rho H_{\frac{1}{1+\rho}}(P) - \rho d'\right)$

and

$$\mathcal{M}_X(d,\rho) \le 1 + 2^{\rho} \exp\left(\rho H_{\frac{1}{1+\rho}}(P) - \rho d'\right)$$

Shkel-Verdú'18: Lossy compression under log-loss \iff Lossless compression + list decoding

Here:

Lossy guessing under log-loss \iff lossless guessing + list decoding

Lower bound $\mathcal{M}_X(d,\rho) \ge (1 + \log M)^{-\rho} \exp\left(\rho H_{\frac{1}{1+\rho}}(P) - \rho d'\right)$

Covering under logarithmic loss

Set of realizations *d*-covered by \hat{P} :

$$\mathcal{S}_d(\hat{P}) \triangleq \left\{ x \in \mathcal{X} : \ell(x, \hat{P}) \le d \right\}$$

Covering under logarithmic loss

Set of realizations *d*-covered by \hat{P} :

$$\mathcal{S}_d(\hat{P}) \triangleq \left\{ x \in \mathcal{X} : \ell(x, \hat{P}) \le d \right\}$$

Lemma (Shkel-Verdú'18). $|\mathcal{S}_d(\hat{P})| \leq \lfloor \exp(d) \rfloor$

Proof: Recall that $x \in S_d(\hat{P}) \iff \hat{P}(x) \ge \exp(-d)$. Then

$$1 = \sum_{x \in \mathcal{X}} \hat{P}(x) \ge \sum_{x \in \mathcal{S}_d(\hat{P})} \hat{P}(x) \ge |\mathcal{S}_d(\hat{P})| \exp(-d).$$

Covering under logarithmic loss

Set of realizations *d*-covered by \hat{P} :

$$\mathcal{S}_d(\hat{P}) \triangleq \left\{ x \in \mathcal{X} : \ell(x, \hat{P}) \le d \right\}$$

Lemma (Shkel-Verdú'18). $|\mathcal{S}_d(\hat{P})| \leq \lfloor \exp(d) \rfloor$

Proof: Recall that $x \in S_d(\hat{P}) \iff \hat{P}(x) \ge \exp(-d)$. Then

$$1 = \sum_{x \in \mathcal{X}} \hat{P}(x) \ge \sum_{x \in \mathcal{S}_d(\hat{P})} \hat{P}(x) \ge |\mathcal{S}_d(\hat{P})| \exp(-d).$$

Corollary. We need at least $\left\lceil \frac{M}{\lfloor \exp(d) \rfloor} \right\rceil$ reconstructions to d-cover $\mathcal X$

Equivocation bound

For a *d*-admissible strategy given that we know G(X), what is the remaining uncertainty about X?

Lemma. For ${\cal G}(X)$ induced by a $d\mbox{-}{\rm admissible}$ strategy, we have

 $H(X|G(X)) \le \log \lfloor \exp(d) \rfloor = d'$

Equivocation bound

For a *d*-admissible strategy given that we know G(X), what is the remaining uncertainty about X?

Lemma. For G(X) induced by a *d*-admissible strategy, we have

$$H(X|G(X)) \le \log\lfloor \exp(d) \rfloor = d'$$

Proof: From *d*-admissibility, we have

$$G^{-1}(u) \triangleq \{x \in \mathcal{X} : G(x) = u\} \subseteq \mathcal{S}_d(\hat{P}_u)$$

Therefore

$$\begin{split} H(X|G(X) = u) &\leq \log |G^{-1}(u)| \\ &\leq \log |\mathcal{S}_d(\hat{P}_u)| \\ & \mathsf{Shkel-Verd}\hat{u} \leq \log \lfloor \exp(d) \rfloor \end{split}$$

Expected log of integer r.v.

Lemma (Arikan'96). Let $U \sim Q$ be a r.v. on $\{1, 2, ..., M\}$. Then $\mathbb{E} [\log U] \ge H(U) - \log(1 + \log M)$

Expected log of integer r.v.

Lemma (Arikan'96). Let $U \sim Q$ be a r.v. on $\{1, 2, ..., M\}$. Then $\mathbb{E} [\log U] \ge H(U) - \log(1 + \log M)$

Proof: Define $c \triangleq \sum_{i=1}^{M} \frac{1}{i}$ and the pmf

$$\hat{Q}(u) = \frac{1}{cu}, \ u \in \{1, 2, \dots, M\}$$

which is well defined since $c \leq 1 + \log M$. We have

$$\mathbb{E}\left[\log U\right] = \mathbb{E}\left[\log \frac{1}{\hat{Q}(U)}\right] - \log c$$
$$= H(U) + D(Q \| \hat{Q}) - \log c$$
$$\geq H(U) - \log(1 + \log M)$$

Proof of lower bound

Arikan's lower bound:

Let Q be an arbitrary pmf on $\mathcal X$ such that $Q\ll P.$ In what follows, we have $X\sim P$ and $X'\sim Q.$

Proof of lower bound

Arikan's lower bound:

Let Q be an arbitrary pmf on $\mathcal X$ such that $Q\ll P.$ In what follows, we have $X\sim P$ and $X'\sim Q.$

$$\begin{split} \mathbb{E}\left[G(X)^{\rho}\right] &= \sum_{x \in \mathcal{X}} P(x)G(x)^{\rho} \\ &= \sum_{x \in \mathcal{X}} Q(x) \exp\left(-\log\left(\frac{Q(x)}{P(x)G(x)^{\rho}}\right)\right) \\ \\ \mathsf{Jensen} &\geq \exp\left(-\sum_{x \in \mathcal{X}} Q(x) \log\left(\frac{Q(x)}{P(x)G(x)^{\rho}}\right)\right) \\ &= \exp\left(-D(Q||P) + \rho \mathbb{E}\left[\log G(X')\right]\right) \end{split}$$

Proof of lower bound

Arikan's lower bound:

Let Q be an arbitrary pmf on \mathcal{X} such that $Q \ll P$. In what follows, we have $X \sim P$ and $X' \sim Q$.

$$\begin{split} \mathsf{E}\left[G(X)^{\rho}\right] &= \sum_{x \in \mathcal{X}} P(x)G(x)^{\rho} \\ &= \sum_{x \in \mathcal{X}} Q(x) \exp\left(-\log\left(\frac{Q(x)}{P(x)G(x)^{\rho}}\right)\right) \\ \mathsf{Jensen} &\geq \exp\left(-\sum_{x \in \mathcal{X}} Q(x) \log\left(\frac{Q(x)}{P(x)G(x)^{\rho}}\right)\right) \\ &= \exp\left(-D(Q||P) + \rho \mathbb{E}\left[\log G(X')\right]\right) \end{split}$$

Next we deal with the term $\mathbb{E}\left[\log G(X')\right]$

Proof of lower bound (cont.)

G(X') is a r.v. defined on $\{1, 2, \ldots, M\}$. Hence:

 ${\sf E-log-int} \quad {\sf E}\left[\log G(X')\right] \geq H(G(X')) - \log(1 + \log M)$

Proof of lower bound (cont.)

$$G(X')$$
 is a r.v. defined on $\{1,2,\ldots,M\}$. Hence:
$$\mathbb{E}\text{-log-int} \quad \mathbb{E}\left[\log G(X')\right] \geq H(G(X')) - \log(1 + \log M)$$

The entropy is bounded as:

$$H(G(X')) = I(X'; G(X'))$$

= $H(X') - H(X'|G(X'))$
Equivocation $\geq H(X') - d'$
= $H(Q) - d'$

Proof of lower bound (cont.)

$$G(X')$$
 is a r.v. defined on $\{1,2,\ldots,M\}$. Hence:
$$\mathbb{E}\text{-log-int} \quad \mathbb{E}\left[\log G(X')\right] \geq H(G(X')) - \log(1 + \log M)$$

The entropy is bounded as:

$$H(G(X')) = I(X'; G(X'))$$

= $H(X') - H(X'|G(X'))$
Equivocation $\geq H(X') - d'$
= $H(Q) - d'$

Combining bounds and tightening w.r.t. Q:

$$\mathbb{E}\left[G(X)^{\rho}\right] \ge (1 + \log M)^{-\rho} \exp\left(-D(Q||P) + \rho H(Q) - \rho d'\right)$$
$$\ge (1 + \log M)^{-\rho} \exp\left(\rho H_{\frac{1}{1+\rho}}(P) - \rho d'\right)$$

Upper bound $\mathcal{M}_X(d,\rho) \le 1 + 2^{\rho} \exp\left(\rho H_{\frac{1}{1+\rho}}(P) - \rho d'\right)$

List guessing

Any guess *d*-covers at most $L = \lfloor \exp(d) \rfloor$ elements. Smallest number of guesses to *d*-cover \mathcal{X} is $N = \lceil M/L \rceil$. Partition \mathcal{X} into N lists:

$$\mathcal{L}_{1} = \{1, 2, \dots, L\}$$

$$\mathcal{L}_{2} = \{L + 1, L + 2, \dots, 2L\}$$

$$\vdots$$

$$\mathcal{L}_{N} = \{(N - 1)L + 1, \dots, M\}$$

List guessing

Any guess *d*-covers at most $L = \lfloor \exp(d) \rfloor$ elements. Smallest number of guesses to *d*-cover \mathcal{X} is $N = \lceil M/L \rceil$. Partition \mathcal{X} into N lists:

$$\mathcal{L}_1 = \{1, 2, \dots, L\}$$

 $\mathcal{L}_2 = \{L + 1, L + 2, \dots, 2L\}$

÷

$$\mathcal{L}_N = \{(N-1)L+1, \dots, M\}$$

For each $u \in \{1, 2, \dots, N\}$, define \hat{P}_u as

$$\hat{P}_u(x) = \frac{\mathbb{1}\left[x \in \mathcal{L}_u\right]}{|\mathcal{L}_u|}, \ x \in \mathcal{X}$$

List guessing

Any guess *d*-covers at most $L = \lfloor \exp(d) \rfloor$ elements. Smallest number of guesses to *d*-cover \mathcal{X} is $N = \lceil M/L \rceil$. Partition \mathcal{X} into N lists:

$$\mathcal{L}_1 = \{1, 2, \dots, L\}$$

 $\mathcal{L}_2 = \{L + 1, L + 2, \dots, 2L\}$

:

$$\mathcal{L}_N = \{(N-1)L+1, \dots, M\}$$

For each $u \in \{1, 2, \dots, N\}$, define \hat{P}_u as

$$\hat{P}_u(x) = \frac{\mathbb{1}\left[x \in \mathcal{L}_u\right]}{|\mathcal{L}_u|}, \quad x \in \mathcal{X}$$

- The above strategy is *d*-admissible
- Guessing function: $G(x) = \begin{bmatrix} x \\ L \end{bmatrix}, x \in \mathcal{X}$

Proof of upper bound

Next we wish to upper bound $\mathbb{E}[G(X)^{\rho}] = \mathbb{E}\left[\left\lceil \frac{X}{L} \right\rceil^{\rho}\right]$. To this end, we start with upper bounding $\mathbb{E}[X^{\rho}]$

Proof of upper bound

Next we wish to upper bound $\mathbb{E}[G(X)^{\rho}] = \mathbb{E}\left[\left\lceil \frac{X}{L} \right\rceil^{\rho}\right]$. To this end, we start with upper bounding $\mathbb{E}[X^{\rho}]$

Arikan's upper bound:

Recall that $P(x') \ge P(x)$ for all $x' \le x$, and hence

$$x = \sum_{x' \in \mathcal{X}} \mathbb{1} \left[x' \le x \right] \le \sum_{x' \in \mathcal{X}} \left(\frac{P(x')}{P(x)} \right)^{\frac{1}{1+\rho}}$$

Proof of upper bound

Next we wish to upper bound $\mathbb{E}[G(X)^{\rho}] = \mathbb{E}\left[\left\lceil \frac{X}{L} \right\rceil^{\rho}\right]$. To this end, we start with upper bounding $\mathbb{E}[X^{\rho}]$

Arikan's upper bound:

Recall that $P(x') \geq P(x)$ for all $x' \leq x,$ and hence

$$x = \sum_{x' \in \mathcal{X}} \mathbb{1} \left[x' \le x \right] \le \sum_{x' \in \mathcal{X}} \left(\frac{P(x')}{P(x)} \right)^{\frac{1}{1+\rho}}$$

Taking the expectation of the ρ -th power, we get

$$\begin{split} \mathbb{E}\left[X^{\rho}\right] &\leq \sum_{x \in \mathcal{X}} P(x) \left(\sum_{x' \in \mathcal{X}} \left(\frac{P(x')}{P(x)}\right)^{\frac{1}{1+\rho}}\right)^{\rho} \\ &= \exp\left(\rho H_{\frac{1}{1+\rho}}(P)\right) \end{split}$$

Proof of upper bound (cont.)

The ρ -th power of the guessing function is bounded as:

$$G(x)^{\rho} = \left\lceil \frac{x}{L} \right\rceil^{\rho} \\ \leq 1 + 2^{\rho} \left(\frac{x}{L} \right)^{\rho}$$

since $\lceil z \rceil^{\rho} \le \max\{1, 2z\}^{\rho} \le 1 + 2^{\rho} z^{\rho}$ (Bunte-Lapidoth'14)

Proof of upper bound (cont.)

The ρ -th power of the guessing function is bounded as:

$$G(x)^{\rho} = \left\lceil \frac{x}{L} \right\rceil^{\rho}$$
$$\leq 1 + 2^{\rho} \left(\frac{x}{L} \right)^{\rho}$$

since $\lceil z \rceil^{\rho} \le \max\{1, 2z\}^{\rho} \le 1 + 2^{\rho} z^{\rho}$ (Bunte-Lapidoth'14)

Taking the expectation:

$$\begin{split} \mathbb{E}\left[G(X)^{\rho}\right] &= \mathbb{E}\left[\left\lceil\frac{X}{L}\right\rceil^{\rho}\right] \\ &\leq 1 + \left(\frac{2}{L}\right)^{\rho} \mathbb{E}\left[X^{\rho}\right] \\ &\text{Arikan} \leq 1 + \left(\frac{2}{L}\right)^{\rho} \exp\left(\rho H_{\frac{1}{1+\rho}}(P)\right) \\ &= 1 + 2^{\rho} \exp\left(\rho H_{\frac{1}{1+\rho}}(P) - \rho \log\lfloor\exp(d)\rfloor\right) \end{split}$$

Some concluding remark

- Log-loss is a cheat code for lossy source coding: lossless source coding + list decoding, no random selection.
- Log-loss is a cheat code for lossy guessing.
- Result with side information Y should follow similarly (in terms of Arimoto's conditional Rényi entropy).
- Distributed encoders, compressed side information, etc.