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Guessing problem (Massey'94, Arikan'96)

A rv. X is drawn from a finite set X = {1,2,..., M} according to
pmf P. Assume P(1) > P(2) > ---> P(M) > 0.

A guesser seeks to determine X through a sequence of inquiries

“is X = a7
“is X = a7

until the answer is ‘“yes".
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Guessing problem (Massey'94, Arikan'96)

A rv. X is drawn from a finite set X = {1,2,..., M} according to
pmf P. Assume P(1) > P(2) > ---> P(M) > 0.

A guesser seeks to determine X through a sequence of inquiries

“is X = a7
“is X = a7

until the answer is ‘“yes".
Guessing function: G(x) £ number of required guesses when X =
Object of interest: distribution of G(X)

Motivation/Applications: security (password attacks), channel-coding
(decoding effort), betting games, database search, etc.
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Guessing moments

Guessing moments: The p-th guessing moment (p > 0) is defined as

Mx(p) = min E [G(X)’]

4/23



Guessing moments

Guessing moments: The p-th guessing moment (p > 0) is defined as

Mi(p) £ min E [G(X)]

The obvious guessing strategy simultaneously minimizes all moments

Theorem (Arikan'96). The p-th guessing moment (p > 0) satisfies

(1+log M)~ exp (pH _1_(P)) < Mux(p) < exp (pH_._(P))

where the Rényi entropy of order a € (0,1) U (1, 00) is defined as

1 E - log (Z P(x)a>

rzeX

Ho(P) &

and remaining orders by cont. extension.
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Guessing exponents

A

Asymptotics: Guessing a sequence X" = (X1,...,X,) i.id. ~ P

Corollary (Arikan'96). The p-th guessing exponent is given by

lim_~ log M (p) = pH_o_(P)

1
n—oo N 1+p

for large n, we have Mxn(p) =~ exp (anL (P))
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Guessing exponents

A

Asymptotics: Guessing a sequence X" = (X1,...,X,) i.id. ~ P

Corollary (Arikan'96). The p-th guessing exponent is given by

lim_~ log M (p) = pH_o_(P)

1
n—oo N 1+p

for large n, we have Mxn(p) =~ exp (ani (P))

Why guessing moments/exponents?
@ Tail probability. Chernoff bound:

P [G(X") > exp(m)] < inf E[G(X")")e ™"

= exp <—n sup {m — %log E [G(Xn)p]})

p>0
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Lossy guessing

The goal is to guess a reconstruction & € X of the rv. X
@ Loss/distortion measure: ¢(x,z) > 0
o Lossy guessing strategy: sequence (Z1,Z2,...,ZN)
e Stopping: ¢(x, %) < d for some acceptable d > 0, i.e.

Nis 0z, @) < d?"

Yis 0z, o) < d?"

until the answer is “yes".
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Lossy guessing

The goal is to guess a reconstruction & € X of the rv. X
@ Loss/distortion measure: ¢(x,z) > 0
o Lossy guessing strategy: sequence (Z1,Z2,...,ZN)
e Stopping: ¢(x, %) < d for some acceptable d > 0, i.e.

“is O(z,d1) < d?"
Yis 0z, o) < d?"

until the answer is “yes".

d-admissibility: for every x € X, {(x,Z,) < d for some Z,

Guessing function:

G(z) & smallest u € {1,..., N} s.t. £(z,3,) <d

Guessing moment: Mx (d, p) = ming E [G(X)”]
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Guessing subject to distortion (Arikan-Merhav'98)

Asymptotics: The goal is to guess a reconstruction " € X" of an i.id.
sequence X", subject to an additive distortion

1 n
(", i) = — > Ui, &)
=1
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Asymptotics: The goal is to guess a reconstruction " € X" of an i.id.
sequence X", subject to an additive distortion

1 n
(", i) = — > Ui, &)
=1

Theorem (Arikan-Merhav'98). p-th guessing exponent is given by

li —log Mxn (d,p) = max {pR(@. ) = D(Q|IP)}

n—00 M,

where R(Q,d) is the rate-distortion function of DMS @

7/23



Guessing subject to distortion (Arikan-Merhav'98)

Asymptotics: The goal is to guess a reconstruction " € X" of an i.id.
sequence X", subject to an additive distortion

z", ") E Uz, ;)

Theorem (Arikan-Merhav'98). p-th guessing exponent is given by

li —log Mxn (d,p) = max {pR(@. ) = D(Q|IP)}

n—oo N

where R(Q,d) is the rate-distortion function of DMS @

@ Under d =0, we have R(Q,d) = H(Q) and

max {pH (Q) = D(QIP)} = pH o (P)
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Soft guessing subject to logarithmic loss
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Soft reconstruction and logarithmic loss

The goal is to guess a soft reconstruction Poftherv. X
e Soft reconstruction: pmf P € P(X)
e Think of P as a posterior for X (prior is P).
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Logarithmic loss: The loss of reconstructing z as P is

Ay A 1

log —
*Px)

{(x, P) > 0 with equality iff P is a hard reconstruction of =
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Soft reconstruction and logarithmic loss

The goal is to guess a soft reconstruction Poftherv. X
e Soft reconstruction: pmf P € P(X)
e Think of P as a posterior for X (prior is P).

Logarithmic loss: The loss of reconstructing z as P is

Ay A 1

log —
*Px)

E(:p,ﬁ) > 0 with equality iff P is a hard reconstruction of

e Logarithmic loss = information: ¢(x, P) = 1p()

e Forany d >0, z is d-covered by P whenever ((z, P) < d
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Soft guessing

Soft guessing strategy: sequence of pmfs (Pl,Pg,...,PN). For an
acceptable loss level d, soft guessing goes as:

is Uz, P) < d7"
“is 0z, Py) < d?"

until the answer is “yes".
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Soft guessing

A~

Soft guessing strategy: sequence of pmfs (Pl,Pg,...,PN). For an
acceptable loss level d, soft guessing goes as:

is Uz, P) < d7"
“is 0z, Py) < d?"

until the answer is “yes".
o d-admissibility: every x € X is d-covered by at least one P,
@ Guessing function:
G(z) £ smallest index u € {1,2,...,N} s.t. {(z,P,) <d

@ Any good strategy should have N < M = |X| (why?) J

@ For d =log M, how many guesses do we need?
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Exponent under logarithmic loss

Asymptotics: For i.i.d. sequences, take P"(z") =[], P(z;) and

() =) = B
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Exponent under logarithmic loss

Asymptotics: For i.i.d. sequences, take P"(z") =[], P(z;) and
(o ) = 250 (a0 P) = 23 og s
7 i ; ni ]5(%)

Rate-distortion function (Courtade-Weissman'14):

R(Q,d) = H(Q) —d
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Exponent under logarithmic loss

Asymptotics: For i.i.d. sequences, take P"(z") =[], P(z;) and
(o ) = 250 (a0 P) = 23 og s
7 i ; ni P(%)

Rate-distortion function (Courtade-Weissman'14):

R(Q,d) = H(Q) —d

From (Arikan-Merhav'98) we get

Tim % log Mxn(d, p) = max {pH(Q) — pd — D(Q|[P)}

=pH_1 (P)—pd

T+p

Next: Single-shot version with no random selection (covering).
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Main Result

Theorem. Define d’ £ log|exp(d)|. The following bounds hold

Mx(d,p) > (1+log M) " exp (pHip(P)—pdv
and

Mx(d,p) < 1+2exp (pH 1 (P) - pd)
T+
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Main Result

Theorem. Define d’ £ log|exp(d)|. The following bounds hold
Mux(d, p) = (1+1og M)~ exp (pH_o_(P) - pd)
P

and

Mx(d,p) <1+ 2" exp (pH 1 (P) - pd')
i+p

Shkel-Verd(i'18: Lossy compression under log-loss <= Lossless com-
pression + list decoding

Here:
Lossy guessing under log-loss <= lossless guessing + list decoding
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Lower bound

Mx(d,p) > (1+log M) exp (pH 1 (P) = pd)
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Covering under logarithmic loss

Set of realizations d-covered by P:

Su(P) & {x Xz, P)< d}
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Covering under logarithmic loss

Set of realizations d-covered by P:

Su(P) & {x Xz, P)< d}

Lemma (Shkel-Verdi'18). |S4(P)| < |exp(d)|

Proof: Recall that z € S4(P) <= P(z) > exp(—d). Then

1=3"P@) = 3 P@) = Su(P)] exp(—d).

reX x€S4(P)
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Covering under logarithmic loss

Set of realizations d-covered by P:

Su(P) & {x Xz, P)< d}

Lemma (Shkel-Verdd'18). |Sd(p)| < |exp(d)| J

Proof: Recall that z € S4(P) <= P(z) > exp(—d). Then

1=3"P@) = 3 P@) = Su(P)] exp(—d).

reX x€S4(P)

M ' L
Corollary. We need at least [Lexp(d)ﬂ reconstructions to d-cover X J
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Equivocation bound

For a d-admissible strategy given that we know G(X), what is the
remaining uncertainty about X7?

Lemma. For G(X) induced by a d-admissible strategy, we have

H(X|G(X)) < log|exp(d)| = d’
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Equivocation bound

For a d-admissible strategy given that we know G(X), what is the

remaining uncertainty about X7?
Lemma. For G(X) induced by a d-admissible strategy, we have

H(X|G(X)) < log|exp(d)]| = d’

Proof: From d-admissibility, we have
G lu) 2 {z e X:Gx) =u} CSy(P,)
Therefore

H(X|G(X) = u) <log|G™(u)|

<log |Sq(Fy)]
Shkel-Verdi < log|exp(d)|

15/23



Expected log of integer r.v.

Lemma (Arikan'96). Let U ~ @ be ar.v. on {1,2,...,M}. Then

E[logU] > H(U) — log(1 + log M)
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Expected log of integer r.v.

Lemma (Arikan'96). Let U ~ @ be ar.v. on {1,2,...,M}. Then

E[logU] > H(U) — log(1 + log M)

Proof: Define ¢ £ Zf\il 2 and the pmf

Q(u)z%, we{l,2,...,M}

which is well defined since ¢ < 1+ log M. We have

E[logU] = E

1
log Q(U)] —logec

= H(U)+ D(Q|Q) —logec
> H(U) — log(1 + log M)
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Proof of lower bound

Arikan’s lower bound:

Let @ be an arbitrary pmf on X such that ) < P. In what follows, we
have X ~ P and X' ~ Q.
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Proof of lower bound

Arikan’s lower bound:

Let @ be an arbitrary pmf on X such that ) < P. In what follows, we
have X ~ P and X' ~ Q.

= 3 P@)G()

TeX

=Y Q@)ewp (‘ tog <P<f)g<)x>f’>>

zeX

ensen > ex 0 —
J > exp ( ;VQ z)log ( (gj)G(x)p>>
= exp (—D(Q|P) + pE [log G(X")])
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Proof of lower bound

Arikan’s lower bound:

Let @ be an arbitrary pmf on X such that ) < P. In what follows, we
have X ~ P and X' ~ Q.

= 3 P@)G()

TeX

=Y Q@)ewp (‘ tog <P<f)g<)x>f’>>

zeX

ensen > ex 0 —
J > exp ( ;VQ z)log ( (gj)G(x)p>>
= exp (—D(Q|P) + pE [log G(X")])

Next we deal with the term E [log G(X')]
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Proof of lower bound (cont.)

G(X') is a r.v. defined on {1,2,..., M}. Hence:

E-log-int E [log G(X")] > H(G(X")) — log(1 + log M)
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Proof of lower bound (cont.)

G(X') is a r.v. defined on {1,2,..., M}. Hence:

E-log-int E [log G(X")] > H(G(X")) — log(1 + log M)

The entropy is bounded as:
H(G(X') = I(X"; G(X))
= H(X') - H(X'|G(X"))
Equivocation > H(X') —d’
—H(Q) ~d
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Proof of lower bound (cont.)

G(X') is a r.v. defined on {1,2,..., M}. Hence:

E-log-int E [log G(X")] > H(G(X")) — log(1 + log M)

The entropy is bounded as:
H(G(X') = I(X"; G(X))
= H(X') - H(X'|G(X"))
Equivocation > H(X') —d’
— Q) - d
Combining bounds and tightening w.r.t. @:
E[G(X)”] = (1 +1log M)~ exp (—D(Q||P) + pH(Q) — pd')
—p o
> (14 log M) Pexp (pHﬁ(P) pd)
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Upper bound

Mx(d,p) <1+ 27 exp <PHL (P) - pd’)
T+p
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List guessing

Any guess d-covers at most L = |exp(d)] elements. Smallest number
of guesses to d-cover X' is N = [M/L]. Partition X’ into N lists:

L1={1,2,...,L}
Lo={L+1,L+2,...,2L}

EN:{(N—l)L+1,...7M}
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of guesses to d-cover X' is N = [M/L]. Partition X’ into N lists:

L1={1,2,...,L}
Lo={L+1,L+2,...,2L}

Ly={(N—-1)L+1,...,M}
For each w € {1,2,..., N}, define P, as

N 1[z € L]
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List guessing

Any guess d-covers at most L = |exp(d)] elements. Smallest number
of guesses to d-cover X' is N = [M/L]. Partition X’ into N lists:

Ly ={1,2,...,L}
Lo={L+1,L+2,...,2L}

EN:{(N—l)L+1,...7M}

For each w € {1,2,..., N}, define P, as

N 1[z € L]
P(z)=——5—7—, z€X
Lol
@ The above strategy is d-admissible
o Guessing function: G(z) = [%], z € X J
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Proof of upper bound

Next we wish to upper bound E [G/(X)?] = E [[£]’]. To this end, we
start with upper bounding E [X7]
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Proof of upper bound

Next we wish to upper bound E [G/(X)?] = E [[£]’]. To this end, we

start with upper bounding E [X7]

Arikan's upper bound:
Recall that P(z) > P(x) for all 2/ <z, and hence

=Tz Y (R)”

r'eXx r’ex
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Proof of upper bound

Next we wish to upper bound E [G/(X)?] = E [[£]’]. To this end, we

start with upper bounding E [X7]

Arikan’s upper bound:
Recall that P(z) > P(x) for all 2/ <z, and hence

=Tz Y (R)”

r'eXx r’ex

Taking the expectation of the p-th power, we get

Elx] <Y Pla) (

reX

r'eX

= exp (pH_1_(P))

s (57
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Proof of upper bound (cont.)

The p-th power of the guessing function is bounded as:
TP
cor-[;]
() =7
T\P
<142 (—)
<1+ 1

since [z]” < max{1,2z}* <1+ 2°z" (Bunte-Lapidoth'14)
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Proof of upper bound (cont.)

The p-th power of the guessing function is bounded as:
X

p
p_|Z
() {LW
T\P
< P=
<1+2°(7)
since [z]” < max{1,2z}* <1+ 2°z" (Bunte-Lapidoth'14)

Taking the expectation:

cam <[]
<1+ (i)p[E [X7]
Arikan < 1+ <Z>pexp (;)Hﬁ (P))

= 1+ 2 exp (pH 1 (P) ~ ploglesp(d)])
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Some concluding remark

@ Log-loss is a cheat code for lossy source coding: lossless source
coding + list decoding, no random selection.

@ Log-loss is a cheat code for lossy guessing.

@ Result with side information Y should follow similarly (in terms of
Arimoto's conditional Rényi entropy).

@ Distributed encoders, compressed side information, etc.
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