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Guessing problem (Massey’94, Arikan’96)

A r.v. X is drawn from a finite set X = {1, 2, . . . ,M} according to
pmf P . Assume P (1) ≥ P (2) ≥ · · · ≥ P (M) > 0.

A guesser seeks to determine X through a sequence of inquiries

“is X = x1?”
“is X = x2?”

...

until the answer is “yes”.

Guessing function: G(x) ≜ number of required guesses when X = x

Object of interest: distribution of G(X)

Motivation/Applications: security (password attacks), channel-coding
(decoding effort), betting games, database search, etc.
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Guessing moments

Guessing moments: The ρ-th guessing moment (ρ > 0) is defined as

MX(ρ) ≜ min
G
E [G(X)ρ]

The obvious guessing strategy simultaneously minimizes all moments

Theorem (Arikan’96). The ρ-th guessing moment (ρ > 0) satisfies

(1 + logM)−ρ exp
(
ρH 1

1+ρ
(P )
)
≤ MX(ρ) ≤ exp

(
ρH 1

1+ρ
(P )
)

where the Rényi entropy of order α ∈ (0, 1) ∪ (1,∞) is defined as

Hα(P ) ≜
1

1− α
log

(∑
x∈X

P (x)α

)

and remaining orders by cont. extension.

4 / 23



Guessing moments

Guessing moments: The ρ-th guessing moment (ρ > 0) is defined as

MX(ρ) ≜ min
G
E [G(X)ρ]

The obvious guessing strategy simultaneously minimizes all moments

Theorem (Arikan’96). The ρ-th guessing moment (ρ > 0) satisfies

(1 + logM)−ρ exp
(
ρH 1

1+ρ
(P )
)
≤ MX(ρ) ≤ exp

(
ρH 1

1+ρ
(P )
)
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Guessing exponents

Asymptotics: Guessing a sequence Xn ≜ (X1, . . . , Xn) i.i.d. ∼ P

Corollary (Arikan’96). The ρ-th guessing exponent is given by

lim
n→∞

1

n
logMXn(ρ) = ρH 1

1+ρ
(P )

for large n, we have MXn(ρ) ≈ exp
(
nρH 1

1+ρ
(P )
)

Why guessing moments/exponents?

Tail probability. Chernoff bound:

P [G(Xn) ≥ exp(nγ)] ≤ inf
ρ>0

E [G(Xn)ρ] e−nργ

= exp

(
−n sup

ρ>0

{
ργ − 1

n
logE [G(Xn)ρ]

})
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Lossy guessing

The goal is to guess a reconstruction x̂ ∈ X̂ of the r.v. X

Loss/distortion measure: ℓ(x, x̂) ≥ 0

Lossy guessing strategy: sequence (x̂1, x̂2, . . . , x̂N )

Stopping: ℓ(x, x̂u) ≤ d for some acceptable d ≥ 0, i.e.

“is ℓ(x, x̂1) ≤ d?”
“is ℓ(x, x̂2) ≤ d?”

...

until the answer is “yes”.

d-admissibility: for every x ∈ X , ℓ(x, x̂u) ≤ d for some x̂u

Guessing function:

G(x) ≜ smallest u ∈ {1, . . . , N} s.t. ℓ(x, x̂u) ≤ d

Guessing moment: MX(d, ρ) ≜ minG E [G(X)ρ]
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Guessing subject to distortion (Arikan-Merhav’98)

Asymptotics: The goal is to guess a reconstruction x̂n ∈ X̂ n of an i.i.d.
sequence Xn, subject to an additive distortion

ℓ(xn, x̂n) =
1

n

n∑
i=1

ℓ(xi, x̂i)

Theorem (Arikan-Merhav’98). ρ-th guessing exponent is given by

lim
n→∞

1

n
logMXn(d, ρ) = max

Q
{ρR(Q, d)−D(Q∥P )}

where R(Q, d) is the rate-distortion function of DMS Q

Under d = 0, we have R(Q, d) = H(Q) and

max
Q

{ρH(Q)−D(Q∥P )} = ρH 1
1+ρ

(P )
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Soft guessing subject to logarithmic loss
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Soft reconstruction and logarithmic loss

The goal is to guess a soft reconstruction P̂ of the r.v. X

Soft reconstruction: pmf P̂ ∈ P(X )

Think of P̂ as a posterior for X (prior is P ).

Logarithmic loss: The loss of reconstructing x as P̂ is

ℓ(x, P̂ ) ≜ log
1

P̂ (x)

ℓ(x, P̂ ) ≥ 0 with equality iff P̂ is a hard reconstruction of x

Logarithmic loss = information: ℓ(x, P̂ ) = ıP̂ (x)

For any d ≥ 0, x is d-covered by P̂ whenever ℓ(x, P̂ ) ≤ d
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Soft guessing

Soft guessing strategy: sequence of pmfs (P̂1, P̂2, . . . , P̂N ). For an
acceptable loss level d, soft guessing goes as:

“is ℓ(x, P̂1) ≤ d?”
“is ℓ(x, P̂2) ≤ d?”

...

until the answer is “yes”.

d-admissibility: every x ∈ X is d-covered by at least one P̂u

Guessing function:

G(x) ≜ smallest index u ∈ {1, 2, . . . , N} s.t. ℓ(x, P̂u) ≤ d

Any good strategy should have N ≤ M = |X | (why?)
For d = logM , how many guesses do we need?
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Exponent under logarithmic loss

Asymptotics: For i.i.d. sequences, take P̂n(xn) =
∏n

i=1 P̂ (xi) and

ℓ
(
xn, P̂n

)
=

1

n

n∑
i=1

ℓ
(
xi, P̂

)
=

1

n

n∑
i=1

log
1

P̂ (xi)

Rate-distortion function (Courtade-Weissman’14):

R(Q, d) = H(Q)− d

From (Arikan-Merhav’98) we get

lim
n→∞

1

n
logMXn(d, ρ) = max

Q
{ρH(Q)− ρd−D(Q∥P )}

= ρH 1
1+ρ

(P )− ρd

Next: Single-shot version with no random selection (covering).
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Main Result

Theorem. Define d′ ≜ log⌊exp(d)⌋. The following bounds hold

MX(d, ρ) ≥ (1 + logM)−ρ exp
(
ρH 1

1+ρ
(P )− ρd′

)
and

MX(d, ρ) ≤ 1 + 2ρ exp
(
ρH 1

1+ρ
(P )− ρd′

)

Shkel-Verdú’18: Lossy compression under log-loss ⇐⇒ Lossless com-
pression + list decoding

Here:
Lossy guessing under log-loss ⇐⇒ lossless guessing + list decoding
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Lower bound

MX(d, ρ) ≥ (1 + logM)−ρ exp
(
ρH 1

1+ρ
(P )− ρd′

)
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Covering under logarithmic loss

Set of realizations d-covered by P̂ :

Sd(P̂ ) ≜
{
x ∈ X : ℓ(x, P̂ ) ≤ d

}

Lemma (Shkel-Verdú’18). |Sd(P̂ )| ≤ ⌊exp(d)⌋

Proof: Recall that x ∈ Sd(P̂ ) ⇐⇒ P̂ (x) ≥ exp(−d). Then

1 =
∑
x∈X

P̂ (x) ≥
∑

x∈Sd(P̂ )

P̂ (x) ≥ |Sd(P̂ )| exp(−d).

Corollary. We need at least
⌈

M
⌊exp(d)⌋

⌉
reconstructions to d-cover X
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Equivocation bound

For a d-admissible strategy given that we know G(X), what is the
remaining uncertainty about X?

Lemma. For G(X) induced by a d-admissible strategy, we have

H(X|G(X)) ≤ log⌊exp(d)⌋ = d′

Proof: From d-admissibility, we have

G−1(u) ≜ {x ∈ X : G(x) = u} ⊆ Sd(P̂u)

Therefore

H(X|G(X) = u) ≤ log |G−1(u)|
≤ log |Sd(P̂u)|

Shkel-Verdú ≤ log⌊exp(d)⌋
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Expected log of integer r.v.

Lemma (Arikan’96). Let U ∼ Q be a r.v. on {1, 2, . . . ,M}. Then

E [logU ] ≥ H(U)− log(1 + logM)

Proof: Define c ≜
∑M

i=1
1
i and the pmf

Q̂(u) =
1

cu
, u ∈ {1, 2, . . . ,M}

which is well defined since c ≤ 1 + logM . We have

E [logU ] = E

[
log

1

Q̂(U)

]
− log c

= H(U) +D(Q∥Q̂)− log c

≥ H(U)− log(1 + logM)
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Proof of lower bound

Arikan’s lower bound:

Let Q be an arbitrary pmf on X such that Q ≪ P . In what follows, we
have X ∼ P and X ′ ∼ Q.

E [G(X)ρ] =
∑
x∈X

P (x)G(x)ρ

=
∑
x∈X

Q(x) exp

(
− log

(
Q(x)

P (x)G(x)ρ

))

Jensen ≥ exp

(
−
∑
x∈X

Q(x) log

(
Q(x)

P (x)G(x)ρ

))
= exp

(
−D(Q∥P ) + ρE

[
logG(X ′)

])
Next we deal with the term E [logG(X ′)]
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Proof of lower bound (cont.)

G(X ′) is a r.v. defined on {1, 2, . . . ,M}. Hence:

E-log-int E
[
logG(X ′)

]
≥ H(G(X ′))− log(1 + logM)

The entropy is bounded as:

H(G(X ′)) = I(X ′;G(X ′))

= H(X ′)−H(X ′|G(X ′))

Equivocation ≥ H(X ′)− d′

= H(Q)− d′

Combining bounds and tightening w.r.t. Q:

E [G(X)ρ] ≥ (1 + logM)−ρ exp
(
−D(Q∥P ) + ρH(Q)− ρd′

)
≥ (1 + logM)−ρ exp

(
ρH 1

1+ρ
(P )− ρd′

)
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Upper bound

MX(d, ρ) ≤ 1 + 2ρ exp
(
ρH 1

1+ρ
(P )− ρd′

)
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List guessing

Any guess d-covers at most L = ⌊exp(d)⌋ elements. Smallest number
of guesses to d-cover X is N = ⌈M/L⌉. Partition X into N lists:

L1 = {1, 2, . . . , L}
L2 = {L+ 1, L+ 2, . . . , 2L}

...

LN = {(N − 1)L+ 1, . . . ,M}

For each u ∈ {1, 2, . . . , N}, define P̂u as

P̂u(x) =
1 [x ∈ Lu]

|Lu|
, x ∈ X

The above strategy is d-admissible

Guessing function: G(x) =
⌈
x
L

⌉
, x ∈ X
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Proof of upper bound

Next we wish to upper bound E [G(X)ρ] = E

[⌈
X
L

⌉ρ]
. To this end, we

start with upper bounding E [Xρ]

Arikan’s upper bound:

Recall that P (x′) ≥ P (x) for all x′ ≤ x, and hence

x =
∑
x′∈X

1
[
x′ ≤ x

]
≤
∑
x′∈X

(
P (x′)

P (x)

) 1
1+ρ

Taking the expectation of the ρ-th power, we get

E [Xρ] ≤
∑
x∈X

P (x)

(∑
x′∈X

(
P (x′)

P (x)

) 1
1+ρ

)ρ

= exp
(
ρH 1

1+ρ
(P )
)
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Proof of upper bound (cont.)

The ρ-th power of the guessing function is bounded as:

G(x)ρ =
⌈x
L

⌉ρ
≤ 1 + 2ρ

(x
L

)ρ
since ⌈z⌉ρ ≤ max{1, 2z}ρ ≤ 1 + 2ρzρ (Bunte-Lapidoth’14)

Taking the expectation:

E [G(X)ρ] = E

[⌈
X

L

⌉ρ]
≤ 1 +

(
2

L

)ρ

E [Xρ]

Arikan ≤ 1 +

(
2

L

)ρ

exp
(
ρH 1

1+ρ
(P )
)

= 1 + 2ρ exp
(
ρH 1

1+ρ
(P )− ρ log⌊exp(d)⌋

)
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Some concluding remark

Log-loss is a cheat code for lossy source coding: lossless source
coding + list decoding, no random selection.

Log-loss is a cheat code for lossy guessing.

Result with side information Y should follow similarly (in terms of
Arimoto’s conditional Rényi entropy).

Distributed encoders, compressed side information, etc.
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