Soft Guessing Under Logarithmic Loss

Hamdi Joudeh
ICT Lab
Eindhoven University of Technology (TU/e)

Information Theory and Tapas Workshop
Madrid, Jan. 2023

Joint work with Han Wu (TU/e)

Guessing problem (Massey'94, Arikan'96)

A r.v. X is drawn from a finite set $\mathcal{X}=\{1,2, \ldots, M\}$ according to pmf P. Assume $P(1) \geq P(2) \geq \cdots \geq P(M)>0$.
A guesser seeks to determine X through a sequence of inquiries

$$
\begin{aligned}
& \text { "is } X=x_{1} \text { ?" } \\
& \text { "is } X=x_{2} \text { ?" }
\end{aligned}
$$

until the answer is "yes".

Guessing problem (Massey'94, Arikan'96)

A r.v. X is drawn from a finite set $\mathcal{X}=\{1,2, \ldots, M\}$ according to pmf P. Assume $P(1) \geq P(2) \geq \cdots \geq P(M)>0$.
A guesser seeks to determine X through a sequence of inquiries

$$
\begin{aligned}
& \text { "is } X=x_{1} \text { ?" } \\
& \text { "is } X=x_{2} \text { ?" }
\end{aligned}
$$

until the answer is "yes".
Guessing function: $G(x) \triangleq$ number of required guesses when $X=x$ Object of interest: distribution of $G(X)$

Guessing problem (Massey'94, Arikan'96)

A r.v. X is drawn from a finite set $\mathcal{X}=\{1,2, \ldots, M\}$ according to pmf P. Assume $P(1) \geq P(2) \geq \cdots \geq P(M)>0$.
A guesser seeks to determine X through a sequence of inquiries

$$
\begin{aligned}
& \text { "is } X=x_{1} \text { ?" } \\
& \text { "is } X=x_{2} \text { ?" }
\end{aligned}
$$

until the answer is "yes".
Guessing function: $G(x) \triangleq$ number of required guesses when $X=x$
Object of interest: distribution of $G(X)$
Motivation/Applications: security (password attacks), channel-coding (decoding effort), betting games, database search, etc.

Guessing moments

Guessing moments: The ρ-th guessing moment $(\rho>0)$ is defined as

$$
\mathcal{M}_{X}(\rho) \triangleq \min _{G} \mathbb{E}\left[G(X)^{\rho}\right]
$$

Guessing moments

Guessing moments: The ρ-th guessing moment $(\rho>0)$ is defined as

$$
\mathcal{M}_{X}(\rho) \triangleq \min _{G} \mathbb{E}\left[G(X)^{\rho}\right]
$$

The obvious guessing strategy simultaneously minimizes all moments
Theorem (Arikan'96). The ρ-th guessing moment ($\rho>0$) satisfies

$$
(1+\log M)^{-\rho} \exp \left(\rho H_{\frac{1}{1+\rho}}(P)\right) \leq \mathcal{M}_{X}(\rho) \leq \exp \left(\rho H_{\frac{1}{1+\rho}}(P)\right)
$$

where the Rényi entropy of order $\alpha \in(0,1) \cup(1, \infty)$ is defined as

$$
H_{\alpha}(P) \triangleq \frac{1}{1-\alpha} \log \left(\sum_{x \in \mathcal{X}} P(x)^{\alpha}\right)
$$

and remaining orders by cont. extension.

Guessing exponents

Asymptotics: Guessing a sequence $X^{n} \triangleq\left(X_{1}, \ldots, X_{n}\right)$ i.i.d. $\sim P$
Corollary (Arikan'96). The ρ-th guessing exponent is given by

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \log \mathcal{M}_{X^{n}}(\rho)=\rho H_{\frac{1}{1+\rho}}(P)
$$

for large n, we have $\mathcal{M}_{X^{n}}(\rho) \approx \exp \left(n \rho H_{\frac{1}{1+\rho}}(P)\right)$

Guessing exponents

Asymptotics: Guessing a sequence $X^{n} \triangleq\left(X_{1}, \ldots, X_{n}\right)$ i.i.d. $\sim P$
Corollary (Arikan'96). The ρ-th guessing exponent is given by

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \log \mathcal{M}_{X^{n}}(\rho)=\rho H_{\frac{1}{1+\rho}}(P)
$$

for large n, we have $\mathcal{M}_{X^{n}}(\rho) \approx \exp \left(n \rho H_{\frac{1}{1+\rho}}(P)\right)$

Why guessing moments/exponents?

- Tail probability. Chernoff bound:

$$
\begin{aligned}
\mathbb{P}\left[G\left(X^{n}\right) \geq \exp (n \gamma)\right] & \leq \inf _{\rho>0} \mathbb{E}\left[G\left(X^{n}\right)^{\rho}\right] e^{-n \rho \gamma} \\
& =\exp \left(-n \sup _{\rho>0}\left\{\rho \gamma-\frac{1}{n} \log \mathbb{E}\left[G\left(X^{n}\right)^{\rho}\right]\right\}\right)
\end{aligned}
$$

Lossy guessing

The goal is to guess a reconstruction $\hat{x} \in \hat{\mathcal{X}}$ of the r.v. X

- Loss/distortion measure: $\ell(x, \hat{x}) \geq 0$
- Lossy guessing strategy: sequence $\left(\hat{x}_{1}, \hat{x}_{2}, \ldots, \hat{x}_{N}\right)$
- Stopping: $\ell\left(x, \hat{x}_{u}\right) \leq d$ for some acceptable $d \geq 0$, i.e.

$$
\begin{aligned}
& \text { "is } \ell\left(x, \hat{x}_{1}\right) \leq d ? \text { " } \\
& \text { "is } \ell\left(x, \hat{x}_{2}\right) \leq d ? \text { ? }
\end{aligned}
$$

until the answer is "yes".

Lossy guessing

The goal is to guess a reconstruction $\hat{x} \in \hat{\mathcal{X}}$ of the r.v. X

- Loss/distortion measure: $\ell(x, \hat{x}) \geq 0$
- Lossy guessing strategy: sequence $\left(\hat{x}_{1}, \hat{x}_{2}, \ldots, \hat{x}_{N}\right)$
- Stopping: $\ell\left(x, \hat{x}_{u}\right) \leq d$ for some acceptable $d \geq 0$, i.e.

$$
\begin{aligned}
& \text { "is } \ell\left(x, \hat{x}_{1}\right) \leq d ? \text { " } \\
& \text { "is } \ell\left(x, \hat{x}_{2}\right) \leq d ? \text { " }
\end{aligned}
$$

until the answer is "yes".

- d-admissibility: for every $x \in \mathcal{X}, \ell\left(x, \hat{x}_{u}\right) \leq d$ for some \hat{x}_{u}
- Guessing function:

$$
G(x) \triangleq \text { smallest } u \in\{1, \ldots, N\} \text { s.t. } \ell\left(x, \hat{x}_{u}\right) \leq d
$$

- Guessing moment: $\mathcal{M}_{X}(d, \rho) \triangleq \min _{G} \mathbb{E}\left[G(X)^{\rho}\right]$

Guessing subject to distortion (Arikan-Merhav'98)

Asymptotics: The goal is to guess a reconstruction $\hat{x}^{n} \in \hat{\mathcal{X}}^{n}$ of an i.i.d. sequence X^{n}, subject to an additive distortion

$$
\ell\left(x^{n}, \hat{x}^{n}\right)=\frac{1}{n} \sum_{i=1}^{n} \ell\left(x_{i}, \hat{x}_{i}\right)
$$

Guessing subject to distortion (Arikan-Merhav'98)

Asymptotics: The goal is to guess a reconstruction $\hat{x}^{n} \in \hat{\mathcal{X}}^{n}$ of an i.i.d. sequence X^{n}, subject to an additive distortion

$$
\ell\left(x^{n}, \hat{x}^{n}\right)=\frac{1}{n} \sum_{i=1}^{n} \ell\left(x_{i}, \hat{x}_{i}\right)
$$

Theorem (Arikan-Merhav'98). ρ-th guessing exponent is given by

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \log \mathcal{M}_{X^{n}}(d, \rho)=\max _{Q}\{\rho R(Q, d)-D(Q \| P)\}
$$

where $R(Q, d)$ is the rate-distortion function of DMS Q

Guessing subject to distortion (Arikan-Merhav'98)

Asymptotics: The goal is to guess a reconstruction $\hat{x}^{n} \in \hat{\mathcal{X}}^{n}$ of an i.i.d. sequence X^{n}, subject to an additive distortion

$$
\ell\left(x^{n}, \hat{x}^{n}\right)=\frac{1}{n} \sum_{i=1}^{n} \ell\left(x_{i}, \hat{x}_{i}\right)
$$

Theorem (Arikan-Merhav'98). ρ-th guessing exponent is given by

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \log \mathcal{M}_{X^{n}}(d, \rho)=\max _{Q}\{\rho R(Q, d)-D(Q \| P)\}
$$

where $R(Q, d)$ is the rate-distortion function of DMS Q

- Under $d=0$, we have $R(Q, d)=H(Q)$ and

$$
\max _{Q}\{\rho H(Q)-D(Q \| P)\}=\rho H_{\frac{1}{1+\rho}}(P)
$$

Soft guessing subject to logarithmic loss

Soft reconstruction and logarithmic loss

The goal is to guess a soft reconstruction \hat{P} of the r.v. X

- Soft reconstruction: pmf $\hat{P} \in \mathcal{P}(\mathcal{X})$
- Think of \hat{P} as a posterior for X (prior is P).

Soft reconstruction and logarithmic loss

The goal is to guess a soft reconstruction \hat{P} of the r.v. X

- Soft reconstruction: pmf $\hat{P} \in \mathcal{P}(\mathcal{X})$
- Think of \hat{P} as a posterior for X (prior is P).

Logarithmic loss: The loss of reconstructing x as \hat{P} is

$$
\ell(x, \hat{P}) \triangleq \log \frac{1}{\hat{P}(x)}
$$

$\ell(x, \hat{P}) \geq 0$ with equality iff \hat{P} is a hard reconstruction of x

Soft reconstruction and logarithmic loss

The goal is to guess a soft reconstruction \hat{P} of the r.v. X

- Soft reconstruction: pmf $\hat{P} \in \mathcal{P}(\mathcal{X})$
- Think of \hat{P} as a posterior for X (prior is P).

Logarithmic loss: The loss of reconstructing x as \hat{P} is

$$
\ell(x, \hat{P}) \triangleq \log \frac{1}{\hat{P}(x)}
$$

$\ell(x, \hat{P}) \geq 0$ with equality iff \hat{P} is a hard reconstruction of x

- Logarithmic loss $=$ information: $\ell(x, \hat{P})=\imath_{\hat{P}}(x)$
- For any $d \geq 0, x$ is d-covered by \hat{P} whenever $\ell(x, \hat{P}) \leq d$

Soft guessing

Soft guessing strategy: sequence of pmfs $\left(\hat{P}_{1}, \hat{P}_{2}, \ldots, \hat{P}_{N}\right)$. For an acceptable loss level d, soft guessing goes as:

$$
\begin{aligned}
& \text { "is } \ell\left(x, \hat{P}_{1}\right) \leq d ? \text { " } \\
& \text { "is } \ell\left(x, \hat{P}_{2}\right) \leq d ? \text { " }
\end{aligned}
$$

until the answer is "yes".

Soft guessing

Soft guessing strategy: sequence of pmfs $\left(\hat{P}_{1}, \hat{P}_{2}, \ldots, \hat{P}_{N}\right)$. For an acceptable loss level d, soft guessing goes as:

$$
\begin{aligned}
& \text { "is } \ell\left(x, \hat{P}_{1}\right) \leq d ? " \\
& \text { "is } \ell\left(x, \hat{P}_{2}\right) \leq d ? \text { " }
\end{aligned}
$$

until the answer is "yes".

- d-admissibility: every $x \in \mathcal{X}$ is d-covered by at least one \hat{P}_{u}
- Guessing function:

$$
G(x) \triangleq \text { smallest index } u \in\{1,2, \ldots, N\} \text { s.t. } \ell\left(x, \hat{P}_{u}\right) \leq d
$$

- Any good strategy should have $N \leq M=|\mathcal{X}|$ (why?)
- For $d=\log M$, how many guesses do we need?

Exponent under logarithmic loss

Asymptotics: For i.i.d. sequences, take $\hat{P}^{n}\left(x^{n}\right)=\prod_{i=1}^{n} \hat{P}\left(x_{i}\right)$ and

$$
\ell\left(x^{n}, \hat{P}^{n}\right)=\frac{1}{n} \sum_{i=1}^{n} \ell\left(x_{i}, \hat{P}\right)=\frac{1}{n} \sum_{i=1}^{n} \log \frac{1}{\hat{P}\left(x_{i}\right)}
$$

Exponent under logarithmic loss

Asymptotics: For i.i.d. sequences, take $\hat{P}^{n}\left(x^{n}\right)=\prod_{i=1}^{n} \hat{P}\left(x_{i}\right)$ and

$$
\ell\left(x^{n}, \hat{P}^{n}\right)=\frac{1}{n} \sum_{i=1}^{n} \ell\left(x_{i}, \hat{P}\right)=\frac{1}{n} \sum_{i=1}^{n} \log \frac{1}{\hat{P}\left(x_{i}\right)}
$$

Rate-distortion function (Courtade-Weissman'14):

$$
R(Q, d)=H(Q)-d
$$

Exponent under logarithmic loss

Asymptotics: For i.i.d. sequences, take $\hat{P}^{n}\left(x^{n}\right)=\prod_{i=1}^{n} \hat{P}\left(x_{i}\right)$ and

$$
\ell\left(x^{n}, \hat{P}^{n}\right)=\frac{1}{n} \sum_{i=1}^{n} \ell\left(x_{i}, \hat{P}\right)=\frac{1}{n} \sum_{i=1}^{n} \log \frac{1}{\hat{P}\left(x_{i}\right)}
$$

Rate-distortion function (Courtade-Weissman'14):

$$
R(Q, d)=H(Q)-d
$$

From (Arikan-Merhav'98) we get

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{1}{n} \log \mathcal{M}_{X^{n}}(d, \rho) & =\max _{Q}\{\rho H(Q)-\rho d-D(Q \| P)\} \\
& =\rho H_{\frac{1}{1+\rho}}(P)-\rho d
\end{aligned}
$$

Next: Single-shot version with no random selection (covering).

Main Result

Theorem. Define $d^{\prime} \triangleq \log \lfloor\exp (d)\rfloor$. The following bounds hold

$$
\mathcal{M}_{X}(d, \rho) \geq(1+\log M)^{-\rho} \exp \left(\rho H_{\frac{1}{1+\rho}}(P)-\rho d^{\prime}\right)
$$

and

$$
\mathcal{M}_{X}(d, \rho) \leq 1+2^{\rho} \exp \left(\rho H_{\frac{1}{1+\rho}}(P)-\rho d^{\prime}\right)
$$

Main Result

Theorem. Define $d^{\prime} \triangleq \log \lfloor\exp (d)\rfloor$. The following bounds hold

$$
\mathcal{M}_{X}(d, \rho) \geq(1+\log M)^{-\rho} \exp \left(\rho H_{\frac{1}{1+\rho}}(P)-\rho d^{\prime}\right)
$$

and

$$
\mathcal{M}_{X}(d, \rho) \leq 1+2^{\rho} \exp \left(\rho H_{\frac{1}{1+\rho}}(P)-\rho d^{\prime}\right)
$$

Shkel-Verdú'18: Lossy compression under log-loss \Longleftrightarrow Lossless compression + list decoding

Here:
Lossy guessing under log-loss \Longleftrightarrow lossless guessing + list decoding

Lower bound

$$
\mathcal{M}_{X}(d, \rho) \geq(1+\log M)^{-\rho} \exp \left(\rho H_{\frac{1}{1+\rho}}(P)-\rho d^{\prime}\right)
$$

Covering under logarithmic loss

Set of realizations d-covered by \hat{P} :

$$
\mathcal{S}_{d}(\hat{P}) \triangleq\{x \in \mathcal{X}: \ell(x, \hat{P}) \leq d\}
$$

Covering under logarithmic loss

Set of realizations d-covered by \hat{P} :

$$
\mathcal{S}_{d}(\hat{P}) \triangleq\{x \in \mathcal{X}: \ell(x, \hat{P}) \leq d\}
$$

Lemma (Shkel-Verdú' 18). $\left|\mathcal{S}_{d}(\hat{P})\right| \leq\lfloor\exp (d)\rfloor$
Proof: Recall that $x \in \mathcal{S}_{d}(\hat{P}) \Longleftrightarrow \hat{P}(x) \geq \exp (-d)$. Then

$$
1=\sum_{x \in \mathcal{X}} \hat{P}(x) \geq \sum_{x \in \mathcal{S}_{d}(\hat{P})} \hat{P}(x) \geq\left|\mathcal{S}_{d}(\hat{P})\right| \exp (-d) .
$$

Covering under logarithmic loss

Set of realizations d-covered by \hat{P} :

$$
\mathcal{S}_{d}(\hat{P}) \triangleq\{x \in \mathcal{X}: \ell(x, \hat{P}) \leq d\}
$$

Lemma (Shkel-Verdú' 18). $\left|\mathcal{S}_{d}(\hat{P})\right| \leq\lfloor\exp (d)\rfloor$
Proof: Recall that $x \in \mathcal{S}_{d}(\hat{P}) \Longleftrightarrow \hat{P}(x) \geq \exp (-d)$. Then

$$
1=\sum_{x \in \mathcal{X}} \hat{P}(x) \geq \sum_{x \in \mathcal{S}_{d}(\hat{P})} \hat{P}(x) \geq\left|\mathcal{S}_{d}(\hat{P})\right| \exp (-d) .
$$

Corollary. We need at least $\left\lceil\frac{M}{\lfloor\exp (d)]}\right\rceil$ reconstructions to d-cover \mathcal{X}

Equivocation bound

For a d-admissible strategy given that we know $G(X)$, what is the remaining uncertainty about X ?

Lemma. For $G(X)$ induced by a d-admissible strategy, we have

$$
H(X \mid G(X)) \leq \log \lfloor\exp (d)\rfloor=d^{\prime}
$$

Equivocation bound

For a d-admissible strategy given that we know $G(X)$, what is the remaining uncertainty about X ?

Lemma. For $G(X)$ induced by a d-admissible strategy, we have

$$
H(X \mid G(X)) \leq \log \lfloor\exp (d)\rfloor=d^{\prime}
$$

Proof: From d-admissibility, we have

$$
G^{-1}(u) \triangleq\{x \in \mathcal{X}: G(x)=u\} \subseteq \mathcal{S}_{d}\left(\hat{P}_{u}\right)
$$

Therefore

$$
\begin{aligned}
H(X \mid G(X)=u) & \leq \log \left|G^{-1}(u)\right| \\
& \leq \log \left|\mathcal{S}_{d}\left(\hat{P}_{u}\right)\right| \\
\text { Shkel-Verdú } & \leq \log \lfloor\exp (d)\rfloor
\end{aligned}
$$

Expected log of integer r.v.

Lemma (Arikan'96). Let $U \sim Q$ be a r.v. on $\{1,2, \ldots, M\}$. Then

$$
\mathbb{E}[\log U] \geq H(U)-\log (1+\log M)
$$

Expected log of integer r.v.

Lemma (Arikan'96). Let $U \sim Q$ be a r.v. on $\{1,2, \ldots, M\}$. Then

$$
\mathbb{E}[\log U] \geq H(U)-\log (1+\log M)
$$

Proof: Define $c \triangleq \sum_{i=1}^{M} \frac{1}{i}$ and the pmf

$$
\hat{Q}(u)=\frac{1}{c u}, u \in\{1,2, \ldots, M\}
$$

which is well defined since $c \leq 1+\log M$. We have

$$
\begin{aligned}
\mathbb{E}[\log U] & =\mathbb{E}\left[\log \frac{1}{\hat{Q}(U)}\right]-\log c \\
& =H(U)+D(Q \| \hat{Q})-\log c \\
& \geq H(U)-\log (1+\log M)
\end{aligned}
$$

Proof of lower bound

Arikan's lower bound:
Let Q be an arbitrary pmf on \mathcal{X} such that $Q \ll P$. In what follows, we have $X \sim P$ and $X^{\prime} \sim Q$.

Proof of lower bound

Arikan's lower bound:
Let Q be an arbitrary pmf on \mathcal{X} such that $Q \ll P$. In what follows, we have $X \sim P$ and $X^{\prime} \sim Q$.

$$
\begin{aligned}
\mathbb{E}\left[G(X)^{\rho}\right] & =\sum_{x \in \mathcal{X}} P(x) G(x)^{\rho} \\
& =\sum_{x \in \mathcal{X}} Q(x) \exp \left(-\log \left(\frac{Q(x)}{P(x) G(x)^{\rho}}\right)\right) \\
\text { Jensen } & \geq \exp \left(-\sum_{x \in \mathcal{X}} Q(x) \log \left(\frac{Q(x)}{P(x) G(x)^{\rho}}\right)\right) \\
& =\exp \left(-D(Q \| P)+\rho \mathbb{E}\left[\log G\left(X^{\prime}\right)\right]\right)
\end{aligned}
$$

Proof of lower bound

Arikan's lower bound:
Let Q be an arbitrary pmf on \mathcal{X} such that $Q \ll P$. In what follows, we have $X \sim P$ and $X^{\prime} \sim Q$.

$$
\begin{aligned}
\mathbb{E}\left[G(X)^{\rho}\right] & =\sum_{x \in \mathcal{X}} P(x) G(x)^{\rho} \\
& =\sum_{x \in \mathcal{X}} Q(x) \exp \left(-\log \left(\frac{Q(x)}{P(x) G(x)^{\rho}}\right)\right) \\
\text { Jensen } & \geq \exp \left(-\sum_{x \in \mathcal{X}} Q(x) \log \left(\frac{Q(x)}{P(x) G(x)^{\rho}}\right)\right) \\
& =\exp \left(-D(Q \| P)+\rho \mathbb{E}\left[\log G\left(X^{\prime}\right)\right]\right)
\end{aligned}
$$

Next we deal with the term $\mathbb{E}\left[\log G\left(X^{\prime}\right)\right]$

Proof of lower bound (cont.)

$G\left(X^{\prime}\right)$ is a r.v. defined on $\{1,2, \ldots, M\}$. Hence:

$$
\text { E-log-int } \quad \mathbb{E}\left[\log G\left(X^{\prime}\right)\right] \geq H\left(G\left(X^{\prime}\right)\right)-\log (1+\log M)
$$

Proof of lower bound (cont.)

$G\left(X^{\prime}\right)$ is a r.v. defined on $\{1,2, \ldots, M\}$. Hence:

$$
\text { E-log-int } \quad \mathbb{E}\left[\log G\left(X^{\prime}\right)\right] \geq H\left(G\left(X^{\prime}\right)\right)-\log (1+\log M)
$$

The entropy is bounded as:

$$
\begin{aligned}
H\left(G\left(X^{\prime}\right)\right) & =I\left(X^{\prime} ; G\left(X^{\prime}\right)\right) \\
& =H\left(X^{\prime}\right)-H\left(X^{\prime} \mid G\left(X^{\prime}\right)\right) \\
\text { Equivocation } & \geq H\left(X^{\prime}\right)-d^{\prime} \\
& =H(Q)-d^{\prime}
\end{aligned}
$$

Proof of lower bound (cont.)

$G\left(X^{\prime}\right)$ is a r.v. defined on $\{1,2, \ldots, M\}$. Hence:

$$
\text { E-log-int } \quad \mathbb{E}\left[\log G\left(X^{\prime}\right)\right] \geq H\left(G\left(X^{\prime}\right)\right)-\log (1+\log M)
$$

The entropy is bounded as:

$$
\begin{aligned}
H\left(G\left(X^{\prime}\right)\right) & =I\left(X^{\prime} ; G\left(X^{\prime}\right)\right) \\
& =H\left(X^{\prime}\right)-H\left(X^{\prime} \mid G\left(X^{\prime}\right)\right) \\
\text { Equivocation } & \geq H\left(X^{\prime}\right)-d^{\prime} \\
& =H(Q)-d^{\prime}
\end{aligned}
$$

Combining bounds and tightening w.r.t. Q :

$$
\begin{aligned}
\mathbb{E}\left[G(X)^{\rho}\right] & \geq(1+\log M)^{-\rho} \exp \left(-D(Q \| P)+\rho H(Q)-\rho d^{\prime}\right) \\
& \geq(1+\log M)^{-\rho} \exp \left(\rho H_{\frac{1}{1+\rho}}(P)-\rho d^{\prime}\right)
\end{aligned}
$$

Upper bound

$$
\mathcal{M}_{X}(d, \rho) \leq 1+2^{\rho} \exp \left(\rho H_{\frac{1}{1+\rho}}(P)-\rho d^{\prime}\right)
$$

List guessing

Any guess d-covers at most $L=\lfloor\exp (d)\rfloor$ elements. Smallest number of guesses to d-cover \mathcal{X} is $N=\lceil M / L\rceil$. Partition \mathcal{X} into N lists:

$$
\begin{aligned}
& \mathcal{L}_{1}=\{1,2, \ldots, L\} \\
& \mathcal{L}_{2}=\{L+1, L+2, \ldots, 2 L\} \\
& \vdots \\
& \mathcal{L}_{N}=\{(N-1) L+1, \ldots, M\}
\end{aligned}
$$

List guessing

Any guess d-covers at most $L=\lfloor\exp (d)\rfloor$ elements. Smallest number of guesses to d-cover \mathcal{X} is $N=\lceil M / L\rceil$. Partition \mathcal{X} into N lists:

$$
\begin{aligned}
\mathcal{L}_{1}= & \{1,2, \ldots, L\} \\
\mathcal{L}_{2}= & \{L+1, L+2, \ldots, 2 L\} \\
& \vdots \\
\mathcal{L}_{N}= & \{(N-1) L+1, \ldots, M\}
\end{aligned}
$$

For each $u \in\{1,2, \ldots, N\}$, define \hat{P}_{u} as

$$
\hat{P}_{u}(x)=\frac{\mathbb{1}\left[x \in \mathcal{L}_{u}\right]}{\left|\mathcal{L}_{u}\right|}, \quad x \in \mathcal{X}
$$

List guessing

Any guess d-covers at most $L=\lfloor\exp (d)\rfloor$ elements. Smallest number of guesses to d-cover \mathcal{X} is $N=\lceil M / L\rceil$. Partition \mathcal{X} into N lists:

$$
\begin{aligned}
& \mathcal{L}_{1}=\{1,2, \ldots, L\} \\
& \mathcal{L}_{2}=\{L+1, L+2, \ldots, 2 L\} \\
& \vdots \\
& \mathcal{L}_{N}=\{(N-1) L+1, \ldots, M\}
\end{aligned}
$$

For each $u \in\{1,2, \ldots, N\}$, define \hat{P}_{u} as

$$
\hat{P}_{u}(x)=\frac{\mathbb{1}\left[x \in \mathcal{L}_{u}\right]}{\left|\mathcal{L}_{u}\right|}, \quad x \in \mathcal{X}
$$

- The above strategy is d-admissible
- Guessing function: $G(x)=\left\lceil\frac{x}{L}\right\rceil, x \in \mathcal{X}$

Proof of upper bound

Next we wish to upper bound $\mathbb{E}\left[G(X)^{\rho}\right]=\mathbb{E}\left[\left\lceil\frac{X}{L}\right\rceil^{\rho}\right]$. To this end, we start with upper bounding $\mathbb{E}\left[X^{\rho}\right]$

Proof of upper bound

Next we wish to upper bound $\mathbb{E}\left[G(X)^{\rho}\right]=\mathbb{E}\left[\left\lceil\frac{X}{L}\right\rceil^{\rho}\right]$. To this end, we start with upper bounding $\mathbb{E}\left[X^{\rho}\right]$

Arikan's upper bound:
Recall that $P\left(x^{\prime}\right) \geq P(x)$ for all $x^{\prime} \leq x$, and hence

$$
x=\sum_{x^{\prime} \in \mathcal{X}} \mathbb{1}\left[x^{\prime} \leq x\right] \leq \sum_{x^{\prime} \in \mathcal{X}}\left(\frac{P\left(x^{\prime}\right)}{P(x)}\right)^{\frac{1}{1+\rho}}
$$

Proof of upper bound

Next we wish to upper bound $\mathbb{E}\left[G(X)^{\rho}\right]=\mathbb{E}\left[\left\lceil\frac{X}{L}\right\rceil^{\rho}\right]$. To this end, we start with upper bounding $\mathbb{E}\left[X^{\rho}\right]$

Arikan's upper bound:
Recall that $P\left(x^{\prime}\right) \geq P(x)$ for all $x^{\prime} \leq x$, and hence

$$
x=\sum_{x^{\prime} \in \mathcal{X}} \mathbb{1}\left[x^{\prime} \leq x\right] \leq \sum_{x^{\prime} \in \mathcal{X}}\left(\frac{P\left(x^{\prime}\right)}{P(x)}\right)^{\frac{1}{1+\rho}}
$$

Taking the expectation of the ρ-th power, we get

$$
\begin{aligned}
\mathbb{E}\left[X^{\rho}\right] & \leq \sum_{x \in \mathcal{X}} P(x)\left(\sum_{x^{\prime} \in \mathcal{X}}\left(\frac{P\left(x^{\prime}\right)}{P(x)}\right)^{\frac{1}{1+\rho}}\right)^{\rho} \\
& =\exp \left(\rho H_{\frac{1}{1+\rho}}(P)\right)
\end{aligned}
$$

Proof of upper bound (cont.)

The ρ-th power of the guessing function is bounded as:

$$
\begin{aligned}
G(x)^{\rho} & =\left\lceil\frac{x}{L}\right\rceil^{\rho} \\
& \leq 1+2^{\rho}\left(\frac{x}{L}\right)^{\rho}
\end{aligned}
$$

since $\lceil z\rceil^{\rho} \leq \max \{1,2 z\}^{\rho} \leq 1+2^{\rho} z^{\rho}$ (Bunte-Lapidoth'14)

Proof of upper bound (cont.)

The ρ-th power of the guessing function is bounded as:

$$
\begin{aligned}
G(x)^{\rho} & =\left\lceil\frac{x}{L}\right\rceil^{\rho} \\
& \leq 1+2^{\rho}\left(\frac{x}{L}\right)^{\rho}
\end{aligned}
$$

since $\lceil z\rceil^{\rho} \leq \max \{1,2 z\}^{\rho} \leq 1+2^{\rho} z^{\rho}$ (Bunte-Lapidoth'14)
Taking the expectation:

$$
\begin{aligned}
\mathbb{E}\left[G(X)^{\rho}\right] & =\mathbb{E}\left[\left[\frac{X}{L}\right]^{\rho}\right] \\
& \leq 1+\left(\frac{2}{L}\right)^{\rho} \mathbb{E}\left[X^{\rho}\right] \\
\text { Arikan } & \leq 1+\left(\frac{2}{L}\right)^{\rho} \exp \left(\rho H_{\frac{1}{1+\rho}}(P)\right) \\
& =1+2^{\rho} \exp \left(\rho H_{\frac{1}{1+\rho}}(P)-\rho \log \lfloor\exp (d)\rfloor\right)
\end{aligned}
$$

Some concluding remark

- Log-loss is a cheat code for lossy source coding: lossless source coding + list decoding, no random selection.
- Log-loss is a cheat code for lossy guessing.
- Result with side information Y should follow similarly (in terms of Arimoto's conditional Rényi entropy).
- Distributed encoders, compressed side information, etc.

