

Does IT Matter?

On Architecture and Modelling Choices in Neural IB-Type Models

ΓШΓ

Der Wissenschaftsfonds. FWF Grant No. J 3765

EC H2020 Grant No. 783163

Joint work with: R. Ali Amjad (Amazon) I. S. Fischer (Google) J. de Freitas (Know-Center) M. Basirat & P. Roth (TU Graz) L. Adilova & A. Fischer (Ruhr Univ. Bochum)

KNOW

Setting: Neural Representation Learning

KNOW

(iilii

Ω

IB principle for training DNNs¹

$$\min_{e_{Z|X}\in\mathcal{E}}I(X;Z)-\beta I(Y;Z)$$

Representation Z should be a *minimal sufficient statistic* for Y:

- ▶ sufficiency \Leftrightarrow large I(Y; Z)
- minimality \Leftrightarrow small I(X; Z)

¹Tishby and Zaslavsky, "Deep learning and the information bottleneck principle", 2015

Information Bottleneck for Representation Learning

$$\min_{e_{Z|X}\in\mathcal{E}}I(X;Z)-\beta I(Y;Z)$$

- generalization bound for discrete $p_{X,Y}^2$
- SGD, compression, and generalization behavior³
- ▶ I(X; Z) for continuous p_X and deterministic \mathcal{E}^4
- setting $Y = f(X)^5$
- learnability of IB (smallest nontrivial β)⁶
- ▶ variational approaches (p_Z and $p_{Y|Z}$ are intractable)

²Vera, Piantanida, and Vega, "The Role of the Information Bottleneck in Representation Learning", 2018

³Shwartz-Ziv and Tishby, Opening the Black Box of Deep Neural Networks via Information, 2017

 $^{^4\}text{Amjad}$ and Geiger, "Learning Representations for Neural Network-Based Classification Using the Information Bottleneck Principle", 2020

⁵Kolchinsky, Tracey, and Van Kuyk, "Caveats for information bottleneck in deterministic scenarios", 2019
⁶Wu et al., "Learnability for the Information Bottleneck", 2019

$$I(X;Z) + \beta H(Y|Z) \\ \leq \mathbb{E} \left(D\left(e_{Z|X}(\cdot|X) \| q_Z(\cdot) \right) \right) - \beta \mathbb{E} \left(\log c_{Y|Z}(Y|Z) \right)$$

and this upper bound is minimized over $e_{Z|X}$, q_Z , and $c_{Y|Z}$.

⁷Alemi et al., "Deep Variational Information Bottleneck", 2017

©Know-Center GmbH • Research Center for Data-Driven Business and Big Data Analytics

í.

Deep Variational Information Bottleneck

This (and similar) approaches yield^{8,9}

- simple latent representation
- improved generalization
- adversarial robustness

KNOW

⁸Kolchinsky, Tracey, and Wolpert, "Nonlinear Information Bottleneck", 2019
⁹Alemi et al., "Deep Variational Information Bottleneck", 2017

Deep Variational Information Bottleneck

This (and similar) approaches yield^{8,9}

- simple latent representation
- improved generalization
- adversarial robustness

But how much is due to IT?

⁹Alemi et al., "Deep Variational Information Bottleneck", 2017

⁸Kolchinsky, Tracey, and Wolpert, "Nonlinear Information Bottleneck", 2019

 $e_{Z|X} = \mathcal{N}(\mu(x), \operatorname{diag}(\sigma^2(x)))$

KNOW

©Know-Center GmbH • Research Center for Data-Driven Business and Big Data Analytics

(iilii

Ω

(+*

a

 $x \longrightarrow e_{Z|X}$ $q_{Z} = \mathcal{N}(0, I_{D})$ z' = (Z, Z) z' = (Z, Z) $q_{Z'} = \mathcal{N}(0, I_{D})$

I(X;Z) = I(X;Z')

©Know-Center GmbH • Research Center for Data-Driven Business and Big Data Analytics

 $e_{Z|X} = \mathcal{N}(\mu(x), \operatorname{diag}(\sigma^2(x)))$

KNOW

uli

0

(A

 $e_{Z|X} = \mathcal{N}(\mu(x), \operatorname{diag}(\sigma^2(x)))$

 $\mathbb{E}\left(D\left(e_{Z'|X}(\cdot|X)\|q_{Z'}(\cdot)\right)\right) = 2 \cdot \mathbb{E}\left(D\left(e_{Z|X}(\cdot|X)\|q_{Z}(\cdot)\right)\right)$

iilii

0

KNOW

Hyperparameter β must be chosen jointly with latent dimension.

iilii

0

Effect of Latent Dimension (cont'd)

In [the context of the β -VAE] it makes sense to normalise β by latent **z** size [...] in order to compare its different values across different latent layer sizes [...] We found that larger latent **z** layer sizes require higher constraint pressures (higher β values) [...].¹⁰

 $^{^{10}\}textsc{Higgins}$ et al., " $\beta\textsc{-VAE}:$ Learning Basic Visual Concepts with a Constrained Variational Framework", 2017

Effect of Latent Dimension (cont'd)

Fully convolutional NN with only 25% of the filters (right) shows initially (!) lower estimates of the variational bound¹¹

nhi

0

¹¹Adilova, Geiger, and Fischer, Information Plane Analysis for Dropout Neural Networks, 2022

Effect of Variational Marginal

$$I(X; Z) = \min_{q_Z} \mathbb{E} \left(D\left(e_{Z|X}(\cdot|X) \| q_Z(\cdot) \right) \right)$$

(iilii

0

a

Effect of Variational Marginal

Selecting a family Q (Gaussian, etc.):

$$I(X; Z) \leq \min_{q_Z \in Q} \mathbb{E} \left(D\left(e_{Z|X}(\cdot|X) \| q_Z(\cdot) \right) \right)$$

iilii

Selecting a *factorized* family, i.e., $q_Z = \prod q_{Z_i}$:

$$I(X; Z) \leq \min_{\{q_{Z_i}\}} \mathbb{E}\left(D\left(e_{Z|X}(\cdot|X)\|\prod q_{Z_i}(\cdot)\right)\right)$$

KNOW

nhi

Effect of Variational Marginal

Selecting a *factorized* family, i.e., $q_Z = \prod q_{Z_i}$:

$$I(X; Z) = \min_{\{q_{Z_i}\}} \mathbb{E}\left(D\left(e_{Z|X}(\cdot|X)\|\prod q_{Z_i}(\cdot)\right)\right) - D\left(p_Z\|\prod p_{Z_i}\right)$$

nhi

 $^{^{12}\}mathsf{Achille}$ and Soatto, "Information Dropout: Learning Optimal Representations Through Noisy Computation", 2018

Effect of Variational Marginal

Selecting a *factorized* family, i.e., $q_Z = \prod q_{Z_i}$:

$$I(X;Z) = \min_{\{q_{Z_i}\}} \mathbb{E}\left(D\left(e_{Z|X}(\cdot|X)\|\prod q_{Z_i}(\cdot)\right)\right) - D\left(p_Z\|\prod p_{Z_i}\right)$$

Minimizing the variational bound on I(X; Z) simultaneously minimizes total correlation of Z (disentanglement)¹²

 $^{^{12}\}mathsf{Achille}$ and Soatto, "Information Dropout: Learning Optimal Representations Through Noisy Computation", 2018

Information Dropout¹³

KNOW

Fig. 5: Plot of the test error and total correlation for different values of β of the final layer of the All-CNN-32 network with Softplus activations trained on CIFAR-10 with 25% of the filters. Increasing β the test error decreases (we prevent

taken from [13]

0

 $^{^{13}\}mathsf{Achille}$ and Soatto, "Information Dropout: Learning Optimal Representations Through Noisy Computation", 2018

Effect of Equivalent Information-Theoretic Functionals

Since Y - X - Z, we have

$$I(X; Z) = I(X, Y; Z) = I(X; Z|Y) + I(Y; Z).$$

KNOW

nhi

0

Effect of Equivalent Information-Theoretic Functionals

Since Y - X - Z, we have I(X; Z) = I(X, Y; Z) = I(X; Z|Y) + I(Y; Z).

Thus,

$$I(X; Z) + \beta H(Y|Z) \\ \leq \mathbb{E} \left(D\left(e_{Z|X}(\cdot|X) || q_Z(\cdot) \right) \right) - \beta \mathbb{E} \left(\log c_{Y|Z}(Y|Z) \right)$$

KNOW

©Know-Center GmbH • Research Center for Data-Driven Business and Big Data Analytics

í.

Effect of Equivalent Information-Theoretic Functionals

Since Y - X - Z, we have

$$I(X; Z) = I(X, Y; Z) = I(X; Z|Y) + I(Y; Z).$$

KNOW

Thus,

$$I(X; Z|Y) + (\beta - 1)H(Y|Z) \\ \leq \mathbb{E} \left(D\left(e_{Z|X}(\cdot|X) \| b_{Z|Y}(\cdot|Y) \right) \right) - (\beta - 1)\mathbb{E} \left(\log c_{Y|Z}(Y|Z) \right)$$

nhi

0

Conditional Entropy Bottleneck (CEB)¹⁵

 $I(X; Z|Y) + (\beta - 1)H(Y|Z) \\ \leq \mathbb{E} \left(D\left(e_{Z|X}(\cdot|X) \| b_{Z|Y}(\cdot|Y) \right) \right) - (\beta - 1)\mathbb{E} \left(\log c_{Y|Z}(Y|Z) \right)$

better accuracy and adversarial robustness than VIB¹⁴
 ...which purportedly is due to CEB yielding a tighter bound on the information bottleneck functional

¹⁴Fischer and Alemi, "CEB Improves Model Robustness", 2020

¹⁵Fischer, "The Conditional Entropy Bottleneck", 2020

Theorem 1. If VCEB is constrained to a consistent classifier-backward encoder pair, and if $Q \supseteq \{q_Z; q_Z(z) = \sum_y b_{Z|Y}(z|y)p_Y(y), b_{Z|Y} \in B\}$, then

$$\min_{\substack{e_{Z|X}\in\mathcal{E}, c_{Y|Z}\in\mathcal{C}, a_{Z}\in\mathcal{Q}}} \mathcal{L}_{VIB} \leq \min_{\substack{e_{Z|X}\in\mathcal{E}, c_{Y|Z}\in\mathcal{L}, b_{Z|Y}\in\mathcal{B}, Z|Y\in\mathcal{B}, \\ (c_{Y|Z}, b_{Z|Y}) \text{ consistent}}} \mathcal{L}_{VCEB}.$$
(13a)

If VIB and VCEB are constrained to a consistent classifier–marginal and classifier-backward encoder pair, respectively, and if $\mathcal{B} \supseteq \{b_{Z|Y}: b_{Z|Y}(z|y) = c_{\hat{Y}|Z}(y|z)q_Z(z)/p_Y(y), q_Z \in \mathcal{Q}, c_{\hat{Y}|Z} \in \mathcal{C}\}$, then

$$\min_{\substack{\sigma_{Z|X} \in \mathcal{E}, \sigma_{Y|Z} \in \mathcal{C}, \sigma_{Z} \in \mathcal{Q} \\ (c_{\varphi_{IZ}, \sigma_{Z})} \text{ consistent}}} \mathcal{L}_{VIB} \ge \min_{\substack{\sigma_{Z|X} \in \mathcal{E}, \sigma_{Z|Y} \in \mathcal{O}, \sigma_{Z|Y} \in \mathcal{B}, \\ (c_{\varphi_{IZ}, \sigma_{Z})} \text{ consistent}}} \mathcal{L}_{VCEB}.$$
(13b)

A fortiori, (13b) continues to hold if VCEB is not constrained to a consistent classifier-backward encoder pair.

...a fair comparison (network architectures) shows that there cannot be an ordering. $^{16}\,$

¹⁶Geiger and Fischer, "A Comparison of Variational Bounds for the Information Bottleneck Functional", 2020

Theorem 1. If VCEB is constrained to a consistent classifier-backward encoder pair, and if $Q \supseteq \{q_Z; q_Z(z) = \sum_y b_{Z|Y}(z|y)p_Y(y), b_{Z|Y} \in B\}$, then

$$\min_{\substack{e_{Z|X} \in \mathcal{E}, c_{Y|Z} \in \mathcal{C}, A_{Z} \in \mathcal{Q}}} \mathcal{L}_{VIB} \leq \min_{\substack{e_{Z|X} \in \mathcal{E}, A_{Y|Z} \in \mathcal{C}, b_{Z|Y} \in \mathcal{B} \\ (c_{Y|Z}, b_{Z|Y}) \text{ consistent}}} \mathcal{L}_{VCEB}.$$
(13a)

If VIB and VCEB are constrained to a consistent classifier–marginal and classifier-backward encoder pair, respectively, and if $\mathcal{B} \supseteq \{b_{Z|Y}: b_{Z|Y}(z|y) = c_{\hat{Y}|Z}(y|z)q_Z(z)/p_Y(y), q_Z \in \mathcal{Q}, c_{\hat{Y}|Z} \in \mathcal{C}\}$, then

$$\min_{\substack{\sigma_{Z|X} \in \mathcal{E}, \sigma_{Y|Z} \in \mathcal{C}, \sigma_{Z} \in \mathcal{Q} \\ (c_{\varphi_{IZ}, \sigma_{Z})} \text{ consistent}}} \mathcal{L}_{VIB} \ge \min_{\substack{\sigma_{Z|X} \in \mathcal{E}, \sigma_{Z|Y} \in \mathcal{O}, \sigma_{Z|Y} \in \mathcal{B}, \\ (c_{\varphi_{IZ}, \sigma_{Z})} \text{ consistent}}} \mathcal{L}_{VCEB}.$$
(13b)

A fortiori, (13b) continues to hold if VCEB is not constrained to a consistent classifier-backward encoder pair.

...a fair comparison (network architectures) shows that there cannot be an ordering.¹⁶ Then why is CEB better than VIB?

¹⁶Geiger and Fischer, "A Comparison of Variational Bounds for the Information Bottleneck Functional", 2020

Selecting a *factorized* family, i.e., $b_{Z|Y} = \prod b_{Z_i|Y}$:

$$I(X; Z|Y) = \min_{\{b_{Z_i|Y}\}} \mathbb{E} \left(D\left(e_{Z|X}(\cdot|X) \| \prod b_{Z_i|Y}(\cdot)\right) \right) - \mathbb{E} \left(D\left(p_{Z|Y} \| \prod p_{Z_i|Y}\right) \right)$$

KNOW

1

¹⁷Amjad and Geiger, Class-Conditional Compression and Disentanglement: Bridging the Gap between Neural Networks and Naive Bayes Classifiers, 2019

Selecting a *factorized* family, i.e., $b_{Z|Y} = \prod b_{Z_i|Y}$:

$$I(X; Z|Y) = \min_{\{b_{Z_i|Y}\}} \mathbb{E} \left(D\left(e_{Z|X}(\cdot|X) \| \prod b_{Z_i|Y}(\cdot)\right) \right) \\ - \mathbb{E} \left(D\left(p_{Z|Y} \| \prod p_{Z_i|Y}\right) \right)$$

Minimizing the variational bound on I(X; Z|Y) simultaneously minimizes conditional total correlation of Z (conditional disentanglement)¹⁷

¹⁷Amjad and Geiger, Class-Conditional Compression and Disentanglement: Bridging the Gap between Neural Networks and Naive Bayes Classifiers, 2019

KNOW

16-dimensional latent space, $\beta = 5$

Invariant Represenation Learning

 $\min_{e_{Z|X}} I(S;Z) - \alpha I(X;Z) - \beta I(Y;Z)$

- ► CPFSI¹⁸
 - privacy funnel¹⁹

 $\min_{e_{Z|X}} I(S; Z) + \alpha I(X; Z) - \beta I(Y; Z)$

▶ fair bottleneck¹⁹

CLUB²⁰
 IBSI²¹

¹⁸Freitas and Geiger, FUNCK: Information Funnels and Bottlenecks for Invariant Representation Learning, 2022

¹⁹Rodríguez-Gálvez, Thobaben, and Skoglund, "A Variational Approach to Privacy and Fairness", 2021

²⁰Razeghi et al., Bottlenecks CLUB: Unifying Information-Theoretic Trade-offs Among Complexity, Leakage, and Utility, 2022

²¹Moyer et al., "Invariant Representations without Adversarial Training", 2018

nî,

Effect of Equivalent Variational Terms

 $\min_{e_{Z|X}} I(S;Z) + \alpha I(X;Z) - \beta I(Y;Z)$

 $\min_{e_{Z|X}} I(S; Z) - \alpha I(X; Z) - \beta I(Y; Z)$

nî,

Effect of Equivalent Variational Terms

í.

Effect of Equivalent Variational Terms

The mutual information term for reconstruction is always maximized!

íI)

Invariant Represenation Learning (cont'd)

iilii

Q

Invariant Represenation Learning (cont'd)

KNOW

different trade-off parameters²²

Ω

²²Freitas and Geiger, FUNCK: Information Funnels and Bottlenecks for Invariant Representation Learning, 2022

To Condition or Not To Condition?

KNOW

 $\min_{e_{Z|X}\in\mathcal{E}} I(S;Z), \ \mathcal{E} \text{ s.t. } H(Y|Z) \leq \varepsilon \quad \min_{e_{Z|X}\in\mathcal{E}'} I(S;Z), \ \mathcal{E}' \text{ s.t. } H(Y|Z,S) \leq \varepsilon$

iilii

 \cap

To Condition or Not To Condition?

KNOW

 $\min_{e_{Z|X}\in\mathcal{E}} I(S;Z), \ \mathcal{E} \ \text{s.t.} \ H(Y|Z) \leq \varepsilon \quad \min_{e_{Z|X}\in\mathcal{E}'} I(S;Z), \ \mathcal{E}' \ \text{s.t.} \ H(Y|Z,S) \leq \varepsilon$

 $\mathcal{E} \subseteq \mathcal{E}'$

iilii

 \circ

To Condition or Not To Condition?

KNOW

 $\min_{e_{\mathcal{I}|X}\in\mathcal{E}} I(S;Z), \ \mathcal{E} \text{ s.t. } H(Y|Z) \leq \varepsilon \quad \min_{e_{\mathcal{I}|X}\in\mathcal{E}'} I(S;Z), \ \mathcal{E}' \text{ s.t. } H(Y|Z,S) \leq \varepsilon$

 $H(Y|Z,S) \leq H(Y|Z) \leq H(Y|Z,S) + H(S)$

©Know-Center GmbH • Research Center for Data-Driven Business and Big Data Analytics

nî,

KNOW Center

(No?) Effect of Conditioning

Why does CFB perform so well?

1

Ω

6

 Information-theoretic objectives are *just one* of many interdependent ingredients

KNOW

iilii

 Information-theoretic objectives are just one of many interdependent ingredients

KNO

• architecture choices (latent dimension size, etc.)

nhi

- Information-theoretic objectives are just one of many interdependent ingredients
 - architecture choices (latent dimension size, etc.)
 - choice of variational approach/bound

í.

 Information-theoretic objectives are *just one* of many interdependent ingredients

- architecture choices (latent dimension size, etc.)
- choice of variational approach/bound
- modelling choices (factorized distributions, conditioning, etc.)

íI)

 Information-theoretic objectives are *just one* of many interdependent ingredients

- architecture choices (latent dimension size, etc.)
- choice of variational approach/bound
- modelling choices (factorized distributions, conditioning, etc.)
- · choice of the optimization method

íI)

 Information-theoretic objectives are *just one* of many interdependent ingredients

- architecture choices (latent dimension size, etc.)
- choice of variational approach/bound
- modelling choices (factorized distributions, conditioning, etc.)
- choice of the optimization method

> that can reinforce or even negate the chosen objective.

 Information-theoretic objectives are *just one* of many interdependent ingredients

- architecture choices (latent dimension size, etc.)
- choice of variational approach/bound
- modelling choices (factorized distributions, conditioning, etc.)
- choice of the optimization method
- ▶ that can reinforce or even negate the chosen objective.
- To what extent can the operational goals (compression?, invariance, etc.) be captured by IT cost functions?

 Information-theoretic objectives are *just one* of many interdependent ingredients

- architecture choices (latent dimension size, etc.)
- choice of variational approach/bound
- modelling choices (factorized distributions, conditioning, etc.)
- choice of the optimization method
- ▶ that can reinforce or even negate the chosen objective.
- To what extent can the operational goals (compression?, invariance, etc.) be captured by IT cost functions?

Thanks!