Does IT Matter?

On Architecture and Modelling Choices in Neural IB-Type Models

Acknowledgments

FШF

Der Wissenschaftsfonds.
FWF Grant No. J 3765

EC H2020 Grant No. 783163

Setting: Neural Representation Learning $\begin{array}{cc}\text { Input } & \text { Latent } \\ X & Z\end{array}$

Information Bottleneck for Representation Learning

IB principle for training DNNs^{1}

$$
\min _{e_{Z \mid X \in \mathcal{E}}} I(X ; Z)-\beta I(Y ; Z)
$$

Representation Z should be a minimal sufficient statistic for Y :

- sufficiency \Leftrightarrow large $I(Y ; Z)$
- minimality \Leftrightarrow small $I(X ; Z)$

[^0]
Information Bottleneck for Representation Learning

$$
\min _{e_{Z \mid X \in \mathcal{E}}} I(X ; Z)-\beta I(Y ; Z)
$$

- generalization bound for discrete $p_{X, Y}{ }^{2}$
- SGD, compression, and generalization behavior ${ }^{3}$
- $I(X ; Z)$ for continuous p_{X} and deterministic \mathcal{E}^{4}
- setting $Y=f(X)^{5}$
- learnability of IB (smallest nontrivial $\beta)^{6}$
- variational approaches (p_{Z} and $p_{Y \mid Z}$ are intractable)

[^1]
Deep Variational Information Bottleneck (VIB) ${ }^{7}$

$$
\begin{aligned}
& I(X ; Z)+\beta H(Y \mid Z) \\
& \quad \leq \mathbb{E}\left(D\left(e_{Z \mid X}(\cdot \mid X) \| q_{Z}(\cdot)\right)\right)-\beta \mathbb{E}\left(\log c_{Y \mid Z}(Y \mid Z)\right)
\end{aligned}
$$

and this upper bound is minimized over $e_{Z \mid X}, q_{Z}$, and $c_{Y \mid Z}$.

[^2]
Deep Variational Information Bottleneck

This (and similar) approaches yield ${ }^{8,9}$

- simple latent representation
- improved generalization
- adversarial robustness

taken from [8]

taken from [9]

[^3]
Deep Variational Information Bottleneck

This (and similar) approaches yield ${ }^{8,9}$

- simple latent representation
- improved generalization
- adversarial robustness

taken from [8]

taken from [9]

But how much is due to IT?

[^4]Center

Effect of Latent Dimension

Effect of Latent Dimension

Effect of Latent Dimension

$$
e_{Z \mid X}=\mathcal{N}\left(\mu(x), \operatorname{diag}\left(\sigma^{2}(x)\right)\right)
$$

$$
\mathbb{E}\left(D\left(e_{Z^{\prime} \mid X}(\cdot \mid X) \| q_{Z^{\prime}}(\cdot)\right)\right)=2 \cdot \mathbb{E}\left(D\left(e_{Z \mid X}(\cdot \mid X) \| q_{Z}(\cdot)\right)\right)
$$

Effect of Latent Dimension

$$
e_{Z \mid X}=\mathcal{N}\left(\mu(x), \operatorname{diag}\left(\sigma^{2}(x)\right)\right)
$$

Hyperparameter β must be chosen jointly with latent dimension.

Effect of Latent Dimension (cont'd)

In [the context of the $\beta-V A E]$ it makes sense to normalise β by latent \mathbf{z} size $[\ldots]$ in order to compare its different values across different latent layer sizes [...] We found that larger latent z layer sizes require higher constraint pressures (higher β values) [...]. ${ }^{10}$

[^5]
Effect of Latent Dimension (cont'd)

Fully convolutional NN with only 25% of the filters (right) shows initially (!) lower estimates of the variational bound ${ }^{11}$

[^6]Center

Effect of Variational Marginal

$$
I(X ; Z)=\min _{q_{Z}} \mathbb{E}\left(D\left(e_{Z \mid X}(\cdot \mid X) \| q_{Z}(\cdot)\right)\right)
$$

Effect of Variational Marginal

Selecting a family \mathcal{Q} (Gaussian, etc.):

$$
I(X ; Z) \leq \min _{q_{Z} \in \mathcal{Q}} \mathbb{E}\left(D\left(e_{Z \mid X}(\cdot \mid X) \| q_{Z}(\cdot)\right)\right)
$$

Effect of Variational Marginal

Selecting a factorized family, i.e., $q_{z}=\prod q_{Z_{i}}$:

$$
I(X ; Z) \leq \min _{\left\{q z_{i}\right\}} \mathbb{E}\left(D\left(e_{Z \mid X}(\cdot \mid X) \| \prod q_{Z_{i}}(\cdot)\right)\right)
$$

Effect of Variational Marginal

Selecting a factorized family, i.e., $q_{z}=\prod q_{Z_{i}}$:

$$
I(X ; Z)=\min _{\left\{q_{z_{i}}\right\}} \mathbb{E}\left(D\left(e_{Z \mid X}(\cdot \mid X) \| \prod q_{z_{i}}(\cdot)\right)\right)-D\left(p_{Z} \| \prod p_{z_{i}}\right)
$$

[^7]
Effect of Variational Marginal

Selecting a factorized family, i.e., $q_{z}=\prod q_{Z_{i}}$:

$$
I(X ; Z)=\min _{\left\{q_{Z_{i}}\right\}} \mathbb{E}\left(D\left(e_{Z \mid X}(\cdot \mid X) \| \prod q_{Z_{i}}(\cdot)\right)\right)-D\left(p_{Z} \| \prod p_{Z_{i}}\right)
$$

Minimizing the variational bound on $I(X ; Z)$ simultaneously minimizes total correlation of Z (disentanglement) ${ }^{12}$

[^8]
Information Dropout ${ }^{13}$

Fig. 5: Plot of the test error and total correlation for different values of β of the final layer of the All-CNN-32 network with Softplus activations trained on CIFAR-10 with 25% of the filters. Increasing β the test error decreases (we prevent
taken from [13]

[^9]
Effect of Equivalent Information-Theoretic Functionals

Since $Y-X-Z$, we have

$$
I(X ; Z)=I(X, Y ; Z)=I(X ; Z \mid Y)+I(Y ; Z)
$$

Effect of Equivalent Information-Theoretic Functionals

Since $Y-X-Z$, we have

$$
I(X ; Z)=I(X, Y ; Z)=I(X ; Z \mid Y)+I(Y ; Z)
$$

Thus,

$$
\begin{aligned}
I(X ; Z)+\beta H & (Y \mid Z) \\
& \leq \mathbb{E}\left(D\left(e_{Z \mid X}(\cdot \mid X) \| q_{Z}(\cdot)\right)\right)-\beta \mathbb{E}\left(\log c_{Y \mid Z}(Y \mid Z)\right)
\end{aligned}
$$

Effect of Equivalent Information-Theoretic Functionals

Since $Y-X-Z$, we have

$$
I(X ; Z)=I(X, Y ; Z)=I(X ; Z \mid Y)+I(Y ; Z)
$$

Thus,

$$
\begin{aligned}
& I(X ; Z \mid Y)+(\beta-1) H(Y \mid Z) \\
& \quad \leq \mathbb{E}\left(D\left(e_{Z \mid X}(\cdot \mid X) \| b_{Z \mid Y}(\cdot \mid Y)\right)\right)-(\beta-1) \mathbb{E}\left(\log c_{Y \mid Z}(Y \mid Z)\right)
\end{aligned}
$$

Conditional Entropy Bottleneck (CEB) ${ }^{15}$

$$
\begin{aligned}
& I(X ; Z \mid Y)+(\beta-1) H(Y \mid Z) \\
& \quad \leq \mathbb{E}\left(D\left(e_{Z \mid X}(\cdot \mid X) \| b_{Z \mid Y}(\cdot \mid Y)\right)\right)-(\beta-1) \mathbb{E}\left(\log c_{Y \mid Z}(Y \mid Z)\right)
\end{aligned}
$$

- better accuracy and adversarial robustness than VIB ${ }^{14}$
- ...which purportedly is due to CEB yielding a tighter bound on the information bottleneck functional

[^10]
Conditional Entropy Bottleneck (cont'd)

Theorem 1. If VCEB is constrained to a consistent classifier-backward encoder pair, and if $\mathcal{Q} \supseteq\left\{q_{Z}: q_{Z}(z)=\right.$ $\left.\sum_{y} b_{Z \mid Y}(z \mid y) p_{Y}(y), b_{Z \mid Y} \in \mathcal{B}\right\}$, then

$$
\begin{equation*}
\min _{e_{Z \mid X} \in \mathcal{E}, c_{\hat{Y} \mid Z} \in \mathcal{C}, q_{Z} \in \mathcal{Q}} \mathcal{L}_{\mathrm{VIB}} \leq \min _{\substack{e_{Z \mid X} \in \mathcal{E}, \hat{c}_{\hat{Y} \mid Z} \in \mathcal{C}, b_{Z \mid Y} \in \mathcal{B} \\\left(c_{\hat{Y} \mid Z}, b_{Z \mid Y}\right) \text { consistent }}} \mathcal{L}_{\mathrm{VCEB}} . \tag{13a}
\end{equation*}
$$

If VIB and VCEB are constrained to a consistent classifier-marginal and classifier-backward encoder pair, respectively, and if $\mathcal{B} \supseteq\left\{b_{Z \mid Y}: b_{Z \mid Y}(z \mid y)=c_{\hat{Y} \mid Z}(y \mid z) q_{Z}(z) / p_{Y}(y), q_{Z} \in \mathcal{Q}, c_{\hat{Y} \mid Z} \in \mathcal{C}\right\}$, then

$$
\begin{equation*}
\min _{\substack{e_{Z \mid X} \in \mathcal{E}, c_{\hat{Y} \mid Z} \in \mathcal{C}, q_{Z} \in \mathcal{Q} \\\left(c_{\hat{Y} \mid Z}, q_{Z}\right) \text { consistent }}} \mathcal{L}_{\mathrm{VIB}} \geq \min _{\substack{e_{Z \mid X} \in \mathcal{E}, c_{Y \mid Z} \in \mathcal{C}, b_{Z \mid Y} \in \mathcal{B} \\\left(c_{\hat{Y} \mid Z}, b_{Z \mid Y}\right) \text { consistent }}} \mathcal{L}_{\mathrm{VCEB}} . \tag{13b}
\end{equation*}
$$

A fortiori, (13b) continues to hold if VCEB is not constrained to a consistent classifier-backward encoder pair.
...a fair comparison (network architectures) shows that there cannot be an ordering. ${ }^{16}$

[^11]
Conditional Entropy Bottleneck (cont'd)

Theorem 1. If VCEB is constrained to a consistent classifier-backward encoder pair, and if $\mathcal{Q} \supseteq\left\{q_{Z}: q_{Z}(z)=\right.$ $\left.\sum_{y} b_{Z \mid Y}(z \mid y) p_{Y}(y), b_{Z \mid Y} \in \mathcal{B}\right\}$, then

$$
\begin{equation*}
\min _{e_{Z \mid X} \in \mathcal{E}, c_{\hat{Y} \mid Z} \in \mathcal{C}, q_{Z} \in \mathcal{Q}} \mathcal{L}_{\mathrm{VIB}} \leq \min _{\substack{e_{Z \mid X} \in \mathcal{E}, \hat{c}_{\hat{Y} \mid Z} \in \mathcal{C}, b_{Z \mid Y} \in \mathcal{B} \\\left(c_{\hat{Y} \mid Z}, b_{Z \mid Y}\right) \text { consistent }}} \mathcal{L}_{\mathrm{VCEB}} . \tag{13a}
\end{equation*}
$$

If VIB and VCEB are constrained to a consistent classifier-marginal and classifier-backward encoder pair, respectively, and if $\mathcal{B} \supseteq\left\{b_{Z \mid Y}: b_{Z \mid Y}(z \mid y)=c_{\hat{Y} \mid Z}(y \mid z) q_{Z}(z) / p_{Y}(y), q_{Z} \in \mathcal{Q}, c_{\hat{Y} \mid Z} \in \mathcal{C}\right\}$, then

$$
\begin{equation*}
\min _{\substack{e_{Z \mid X} \in \mathcal{E}, c_{\hat{Y} \mid Z} \in \mathcal{C}, q_{Z} \in \mathcal{Q} \\\left(c_{\hat{Y} \mid Z}, q_{Z}\right) \text { consistent }}} \mathcal{L}_{\mathrm{VIB}} \geq \min _{\substack{e_{Z \mid X} \in \mathcal{E}, c_{Y \mid Z} \in \mathcal{C}, b_{Z \mid Y} \in \mathcal{B} \\\left(c_{\hat{Y} \mid Z}, b_{Z \mid Y}\right) \text { consistent }}} \mathcal{L}_{\mathrm{VCEB}} . \tag{13b}
\end{equation*}
$$

A fortiori, (13b) continues to hold if VCEB is not constrained to a consistent classifier-backward encoder pair.
...a fair comparison (network architectures) shows that there cannot be an ordering. ${ }^{16}$ Then why is CEB better than VIB?

[^12]
Conditional Entropy Bottleneck (cont'd)

Selecting a factorized family, i.e., $b_{Z \mid Y}=\prod b_{Z_{i} \mid Y}$:

$$
\begin{aligned}
& I(X ; Z \mid Y)=\min _{\left\{b_{Z_{i} \mid}\right\}} \mathbb{E}\left(D\left(e_{Z \mid X}(\cdot \mid X) \| \prod b_{Z_{i} \mid Y}(\cdot)\right)\right) \\
& -\mathbb{E}\left(D\left(p_{Z \mid Y} \| \prod p_{Z_{Z \mid Y}}\right)\right)
\end{aligned}
$$

[^13]
Conditional Entropy Bottleneck (cont'd)

Selecting a factorized family, i.e., $b_{Z \mid Y}=\prod b_{Z_{i} \mid Y}$:

$$
\left.\left.\begin{array}{rl}
I(X ; Z \mid Y)= & \min _{\left\{b_{Z_{i} \mid Y}\right\}} \mathbb{E}\left(D \left(e_{Z \mid X}(\cdot \mid X) \|\right.\right.
\end{array} \prod b_{Z_{i} \mid Y}(\cdot)\right)\right), ~\left(D\left(p_{Z \mid Y} \| \prod p_{Z_{i} \mid Y}\right)\right)
$$

Minimizing the variational bound on $I(X ; Z \mid Y)$ simultaneously minimizes conditional total correlation of Z (conditional disentanglement) ${ }^{17}$

[^14]
Conditional Entropy Bottleneck (cont'd)

16-dimensional latent space, $\beta=5$

Invariant Represenation Learning

$\min _{e_{Z \mid X}} I(S ; Z)-\alpha I(X ; Z)-\beta I(Y ; Z)$

- CPFSI ${ }^{18}$
- privacy funnel ${ }^{19}$

$$
\min _{e_{Z \mid X}} I(S ; Z)+\alpha I(X ; Z)-\beta I(Y ; Z)
$$

- fair bottleneck ${ }^{19}$
- CLUB ${ }^{20}$
- IBSI^{21}

[^15]
Effect of Equivalent Variational Terms

$\min I(S ; Z)+\alpha I(X ; Z)-\beta I(Y ; Z)$
$e_{Z \mid X}$
$\min I(S ; Z)-\alpha I(X ; Z)-\beta I(Y ; Z)$
$e_{Z \mid X}$

Effect of Equivalent Variational Terms

$$
\begin{aligned}
& \min _{e Z \mid X}(1+\alpha) I(X ; Z) \\
& \quad-I(X ; Z \mid S)-\beta I(Y ; Z)
\end{aligned}
$$

$$
\begin{aligned}
& \min _{e Z \mid X}(1-\alpha) I(X ; Z) \\
& \quad-I(X ; Z \mid S)-\beta I(Y ; Z)
\end{aligned}
$$

Effect of Equivalent Variational Terms

$$
\begin{array}{rr}
\min _{e_{Z \mid X}}(1+\alpha) I(X ; Z) & \min _{e_{Z \mid X}}(1-\alpha) I(X ; Z) \\
-I(X ; Z \mid S)-\beta I(Y ; Z) & -I(X ; Z \mid S)-\beta I(Y ; Z)
\end{array}
$$

The mutual information term for reconstruction is always maximized!

Invariant Represenation Learning (cont'd)

Invariant Represenation Learning (cont'd)

Representation learning (32-dimensinal) on the Dutch dataset, different trade-off parameters ${ }^{22}$

[^16]
To Condition or Not To Condition?

$$
\min _{e_{Z \mid X \in \mathcal{E}}} I(S ; Z), \mathcal{E} \text { s.t. } H(Y \mid Z) \leq \varepsilon \min _{e_{Z \mid x} \in \mathcal{E}^{\prime}} I(S ; Z), \mathcal{E}^{\prime} \text { s.t. } H(Y \mid Z, S) \leq \varepsilon
$$

To Condition or Not To Condition?

$$
\min _{e_{Z \mid x \in \mathcal{E}}} I(S ; Z), \mathcal{E} \text { s.t. } H(Y \mid Z) \leq \varepsilon \min _{e_{Z \mid x \in \mathcal{E}}} I(S ; Z), \mathcal{E}^{\prime} \text { s.t. } H(Y \mid Z, S) \leq \varepsilon
$$

$$
\mathcal{E} \subseteq \mathcal{E}^{\prime}
$$

To Condition or Not To Condition?

$\min _{e_{Z \mid X \in \mathcal{E}}} I(S ; Z), \mathcal{E}$ s.t. $H(Y \mid Z) \leq \varepsilon \min _{e_{Z \mid X} \in \mathcal{E}^{\prime}} I(S ; Z), \mathcal{E}^{\prime}$ s.t. $H(Y \mid Z, S) \leq \varepsilon$

$$
H(Y \mid Z, S) \leq H(Y \mid Z) \leq H(Y \mid Z, S)+H(S)
$$

Center

(No?) Effect of Conditioning

Why does CFB perform so well?

Center

Conclusions

- Information-theoretic objectives are just one of many interdependent ingredients

Conclusions

- Information-theoretic objectives are just one of many interdependent ingredients
- architecture choices (latent dimension size, etc.)

Conclusions

- Information-theoretic objectives are just one of many interdependent ingredients
- architecture choices (latent dimension size, etc.)
- choice of variational approach/bound

Conclusions

- Information-theoretic objectives are just one of many interdependent ingredients
- architecture choices (latent dimension size, etc.)
- choice of variational approach/bound
- modelling choices (factorized distributions, conditioning, etc.)

Conclusions

- Information-theoretic objectives are just one of many interdependent ingredients
- architecture choices (latent dimension size, etc.)
- choice of variational approach/bound
- modelling choices (factorized distributions, conditioning, etc.)
- choice of the optimization method

Conclusions

- Information-theoretic objectives are just one of many interdependent ingredients
- architecture choices (latent dimension size, etc.)
- choice of variational approach/bound
- modelling choices (factorized distributions, conditioning, etc.)
- choice of the optimization method
- that can reinforce or even negate the chosen objective.

Conclusions

- Information-theoretic objectives are just one of many interdependent ingredients
- architecture choices (latent dimension size, etc.)
- choice of variational approach/bound
- modelling choices (factorized distributions, conditioning, etc.)
- choice of the optimization method
- that can reinforce or even negate the chosen objective.
- To what extent can the operational goals (compression?, invariance, etc.) be captured by IT cost functions?

Conclusions

- Information-theoretic objectives are just one of many interdependent ingredients
- architecture choices (latent dimension size, etc.)
- choice of variational approach/bound
- modelling choices (factorized distributions, conditioning, etc.)
- choice of the optimization method
- that can reinforce or even negate the chosen objective.
- To what extent can the operational goals (compression?, invariance, etc.) be captured by IT cost functions?

Thanks!

[^0]: ${ }^{1}$ Tishby and Zaslavsky, "Deep learning and the information bottleneck principle", 2015

[^1]: ${ }^{2}$ Vera, Piantanida, and Vega, "The Role of the Information Bottleneck in Representation Learning", 2018
 ${ }^{3}$ Shwartz-Ziv and Tishby, Opening the Black Box of Deep Neural Networks via Information, 2017
 ${ }^{4}$ Amjad and Geiger, "Learning Representations for Neural Network-Based Classification Using the Information Bottleneck Principle", 2020
 ${ }^{5}$ Kolchinsky, Tracey, and Van Kuyk, "Caveats for information bottleneck in deterministic scenarios", 2019
 ${ }^{6} \mathrm{Wu}$ et al., "Learnability for the Information Bottleneck", 2019

[^2]: ${ }^{7}$ Alemi et al., "Deep Variational Information Bottleneck", 2017

[^3]: ${ }^{8}$ Kolchinsky, Tracey, and Wolpert, "Nonlinear Information Bottleneck", 2019
 ${ }^{9}$ Alemi et al., "Deep Variational Information Bottleneck", 2017

[^4]: ${ }^{8}$ Kolchinsky, Tracey, and Wolpert, "Nonlinear Information Bottleneck", 2019
 ${ }^{9}$ Alemi et al., "Deep Variational Information Bottleneck", 2017

[^5]: ${ }^{10}$ Higgins et al., " β-VAE: Learning Basic Visual Concepts with a Constrained Variational Framework", 2017

[^6]: ${ }^{11}$ Adilova, Geiger, and Fischer, Information Plane Analysis for Dropout Neural Networks, 2022

[^7]: ${ }^{12}$ Achille and Soatto, "Information Dropout: Learning Optimal Representations Through Noisy Computation", 2018

[^8]: ${ }^{12}$ Achille and Soatto, "Information Dropout: Learning Optimal Representations Through Noisy Computation", 2018

[^9]: ${ }^{13}$ Achille and Soatto, "Information Dropout: Learning Optimal Representations Through Noisy Computation", 2018

[^10]: ${ }^{14}$ Fischer and Alemi, "CEB Improves Model Robustness", 2020
 ${ }^{15}$ Fischer, "The Conditional Entropy Bottleneck", 2020

[^11]: ${ }^{16}$ Geiger and Fischer, "A Comparison of Variational Bounds for the Information Bottleneck Functional", 2020

[^12]: ${ }^{16}$ Geiger and Fischer, "A Comparison of Variational Bounds for the Information Bottleneck Functional", 2020

[^13]: ${ }^{17}$ Amjad and Geiger, Class-Conditional Compression and Disentanglement: Bridging the Gap between Neural Networks and Naive Bayes Classifiers, 2019

[^14]: ${ }^{17}$ Amjad and Geiger, Class-Conditional Compression and Disentanglement: Bridging the Gap between Neural Networks and Naive Bayes Classifiers, 2019

[^15]: ${ }^{18}$ Freitas and Geiger, FUNCK: Information Funnels and Bottlenecks for Invariant Representation Learning, 2022
 ${ }^{19}$ Rodríguez-Gálvez, Thobaben, and Skoglund, "A Variational Approach to Privacy and Fairness", 2021
 ${ }^{20}$ Razeghi et al., Bottlenecks CLUB: Unifying Information-Theoretic Trade-offs Among Complexity, Leakage, and Utility, 2022
 ${ }^{21}$ Moyer et al., "Invariant Representations without Adversarial Training", 2018

[^16]: ${ }^{22}$ Freitas and Geiger, FUNCK: Information Funnels and Bottlenecks for Invariant Representation Learning, 2022

