Bayes-optimal Estimation in Generalized Linear Models

Ramji Venkataramanan, University of Cambridge (Joint work with Pablo Pascual Cobo and Kuan Hsieh)

Information Theory and Tapas Workshop, Madrid

Generalized Linear Models

$$x \longrightarrow A \xrightarrow{z = Ax} q(z, \varepsilon) \xrightarrow{\varepsilon} q(z, \varepsilon)$$

GOAL:

- Estimate signal $\mathbf{x} \in \mathbb{R}^n$ from observations $\mathbf{y} \equiv (y_1, \dots, y_m)$
- Known sensing matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ and output function q

Examples

• Linear model $y = Ax + \varepsilon$

Examples

• Linear model $y = Ax + \varepsilon$

• 1-bit compressed sensing $y = sign(Ax + \varepsilon)$

Examples

• Linear model $y = Ax + \varepsilon$

• 1-bit compressed sensing $y = sign(Ax + \varepsilon)$

• Phase retrieval
$$\mathbf{y} = |\mathbf{A}\mathbf{x}|^2 + \varepsilon$$

X-ray crystallography

Microscopy

$$x \longrightarrow A \xrightarrow{z = Ax} q(z, \varepsilon) \xrightarrow{\varepsilon} y = q(z, \varepsilon)$$

$$\mathbf{A} = \begin{bmatrix} \overleftarrow{} & \mathbf{a}_1 & \longrightarrow \\ & \vdots & \\ \overleftarrow{} & \mathbf{a}_m & \longrightarrow \end{bmatrix} \in \mathbb{R}^{m \times n}$$

High-dimensional regime

 $rac{m}{n}
ightarrow \delta$ as $m,n
ightarrow \infty$

<ロト < 回 > < 臣 > < 臣 > 王 の Q (C 4/36

Bayesian setting

$$x \longrightarrow A$$
 $z = Ax \rightarrow q(z, \varepsilon)$ $y = q(z, \varepsilon)$

Suppose:

•
$$m{x} \sim P_X$$
 and $m{arepsilon} \sim P_arepsilon$

► A also generated from known distribution

Bayes-optimal estimator that minimizes MSE: $\mathbb{E}\{x \mid A, y\}$

$$\mathsf{MMSE}_n := \frac{1}{n} \mathbb{E}\{\|\boldsymbol{x} - \mathbb{E}\{\boldsymbol{x} \mid \boldsymbol{A}, \boldsymbol{y}\}\|^2\}.$$

Two natural questions

$$x \longrightarrow A$$
 $z = Ax \longrightarrow q(z, \varepsilon)$ $y = q(z, \varepsilon)$

$$\mathsf{MMSE}_n := \frac{1}{n} \mathbb{E}\{\|\boldsymbol{x} - \mathbb{E}\{\boldsymbol{x} \mid \boldsymbol{A}, \boldsymbol{y}\}\|^2\}.$$

1. What is $\lim_{n\to\infty} \mathsf{MMSE}_n$? (for a fixed $\delta = \lim \frac{m}{n}$)

<ロト < 団ト < 巨ト < 巨ト < 巨ト 三 の Q () 6 / 36

Two natural questions

$$x \longrightarrow A \xrightarrow{z = Ax} q(z, \varepsilon) \xrightarrow{\varepsilon} y = q(z, \varepsilon)$$

$$\mathsf{MMSE}_n := rac{1}{n} \mathbb{E}\{\|m{x} - \mathbb{E}\{m{x} \mid m{A}, \, m{y}\}\|^2\}.$$

- 1. What is $\lim_{n\to\infty} \mathsf{MMSE}_n$? (for a fixed $\delta = \lim \frac{m}{n}$)
- 2. How can we design **efficient** estimators whose error approaches lim MMSE_n ?

Asymptotic MMSE $x \longrightarrow A$ z = Ax $q(z, \varepsilon)$ $y = q(z, \varepsilon)$

- For iid Gaussian **A** with $A_{ij} \sim N(0, \frac{1}{n})$
- Signal \boldsymbol{x} iid $\sim P_X$ and noise $\boldsymbol{\varepsilon}$ iid $\sim P_{\varepsilon}$

[Barbier et al. '19]: Formula for asymptotic MMSE in terms of a scalar **potential function** $U(x; \delta)$

$$\lim_{n \to \infty} \mathsf{MMSE}_n = \underset{x \in [0, \mathsf{Var}(X)]}{\arg \min} \frac{U(x; \, \delta)}{U(x; \, \delta)}$$
$$\lim_{n \to \infty} \frac{1}{n} I(X; Y) = \min_{x \in [0, \mathsf{Var}(X)]} a U(x; \, \delta) + b$$

Barbier et al. , Optimal errors and phase transitions in high-dimensional GLMs, PNAS, 2019 7/36

8 / 36

э

≣ ∽ ९ ୯ 8 / 36

э

MMSE: Phase retrieval

Can we achieve this with efficient estimators?

Estimators

Convex relaxations

Iterative algorithms for non-convex objectives:
 Alternating minimization, gradient descent,

Spectral methods

Phase retrieval: [Netrapalli et al. '13], [Candes et al. '13], [Luo et al. '19], [Mondelli & Montanari '19], ...

1-bit CS: [Plan & Vershynin '13], [Jacques et al. '13], and the set of the se

Estimators

Convex relaxations

Iterative algorithms for non-convex objectives:
 Alternating minimization, gradient descent,

Spectral methods

Generic techniques: can incorporate certain constraints like sparsity

But not well-equipped to exploit specific structural info about signal, e.g., known prior

Phase retrieval: [Netrapalli et al. '13], [Candes et al. '13], [Luo et al. '19], [Mondelli & Montanari '19], ... 1-bit CS: [Plan & Vershynin '13], [Jacques et al. '13], ABARE EN EN (10/36)

Approximate Message Passing

Estimator based on **AMP**

- Can be tailored to take advantage of prior info about signal
- Rigorous performance characterization via state evolution Allows us to precisely compute asymptotic MSE

GAMP [Rangan '11]: for GLMs with i.i.d. Gaussian A

- Conjectured to be optimal among poly-time estimators

[Javanmard & Montanari '13], [Schniter & Rangand'14],@→. < ■→ < ■→ → ■→ → へへへ

AMP vs MMSE estimator

Phase retrieval with i.i.d. Gaussian A

AMP vs MMSE estimator

Phase retrieval with i.i.d. Gaussian A

This talk: How to close this gap?

Parallel with coding theory

Consider a rate $R = \frac{1}{2}$ regular LDPC code. E.g.,

 ϵ_{BP} : Threshold with belief propagation decoding ϵ_{ML} : Threshold with optimal (ML) decoding

Figure from Costello et al. Spatially coupled sparse codes on graphs: theory and practice, 2014 Closing the gap: Can make ϵ_{BP} approach ϵ_{ML} with spatially coupled code [Kudekar et al. '14]

Figure from Costello et al. Spatially coupled sparse codes on graphs: theory and practice, 2014

LDPC codes

Rate *R* Regular parity check matrix BP decoder Density evolution

GLM

Sampling ratio δ iid Gaussian sensing matrix AMP estimator State evolution

LDPC codes

Rate RRegular parity check matrix BP decoder Density evolution $\epsilon_{\rm BP}, \epsilon_{\rm ML}$ Spatially coupled code

GLM

 $\begin{array}{c} \mbox{Sampling ratio } \delta \\ \mbox{iid Gaussian sensing matrix} \\ \mbox{AMP estimator} \\ \mbox{State evolution} \\ \mbox{$\delta_{\rm AMP}$, $$$$$ $\delta_{\rm MMSE}$} \\ \mbox{Spatially coupled sensing matrix} \end{array}$

Compressed sensing: [Kudekar, Pfister '10], [Donoho, Javanmard, Montanari '13] . . .

$$x \longrightarrow A$$
 $z = Ax \rightarrow q(z, \varepsilon)$ $y = q(z, \varepsilon)$

Iteratively produces estimates $\mathbf{x}(t)$ and $\mathbf{z}(t)$ for $t \ge 0$ via:

 $g_{in}(\cdot; t) : \mathbb{R} \to \mathbb{R}, \qquad g_{out}(\cdot, y; t) : \mathbb{R}^2 \to \mathbb{R}$

$$x \longrightarrow A$$
 $z = Ax \longrightarrow q(z, \varepsilon)$ $y = q(z, \varepsilon)$

Iteratively produces estimates $\mathbf{x}(t)$ and $\mathbf{z}(t)$ for $t \ge 0$ via:

 $g_{in}(\cdot; t) : \mathbb{R} \to \mathbb{R}, \qquad g_{out}(\cdot, y; t) : \mathbb{R}^2 \to \mathbb{R}$

$$\boldsymbol{x}(t+1) = g_{in}(\boldsymbol{x}(t); t) + \alpha^{x}(t+1)\boldsymbol{A}^{\mathsf{T}}g_{out}(\boldsymbol{z}(t), \boldsymbol{y}; t)$$
$$\boldsymbol{z}(t+1) = \boldsymbol{A}g_{in}(\boldsymbol{x}(t+1); t+1) - \alpha^{z}(t+1)g_{out}(\boldsymbol{z}(t), \boldsymbol{y}; t)$$

[Feng et al. '22]: A unifying tutorial on Approximate Message Passing 16/36

$$\mathbf{x}(t+1) = g_{in}(\mathbf{x}(t); t) + \alpha^{\mathbf{x}}(t+1)\mathbf{A}^{\mathsf{T}}g_{out}(\mathbf{z}(t), \mathbf{y}; t)$$

$$\boldsymbol{z}(t+1) = \boldsymbol{A}g_{\text{in}}(\boldsymbol{x}(t+1); t+1) - \alpha^{\boldsymbol{z}}(t+1)g_{\text{out}}(\boldsymbol{z}(t), \boldsymbol{y}; t)$$

▶ g_{in} and g_{out} applied row-wise

▶ g_{in}, g_{out} Lipschitz, allow us to tailor the algorithm

$$\mathbf{x}(t+1) = g_{in}(\mathbf{x}(t); t) + \alpha^{\mathbf{x}}(t+1)\mathbf{A}^{\mathsf{T}}g_{out}(\mathbf{z}(t), \mathbf{y}; t)$$

$$\boldsymbol{z}(t+1) = \boldsymbol{A}g_{\text{in}}(\boldsymbol{x}(t+1); t+1) - \alpha^{\boldsymbol{z}}(t+1)g_{\text{out}}(\boldsymbol{z}(t), \boldsymbol{y}; t)$$

- gin and gout applied row-wise
- gin, gout Lipschitz, allow us to tailor the algorithm
- Initialized with x^0 and $z(0) = Ax^0$
- Coefficients $\alpha^{x}(t)$ and $\alpha^{z}(t)$ defined in terms of g_{in} and g_{out}

Asymptotics of i.i.d Gaussian GAMP

$$x \longrightarrow A \xrightarrow{z = Ax} q(z, \varepsilon) \longrightarrow y = q(z, \varepsilon)$$

$$\boldsymbol{x}(t+1) = g_{\text{in}}(\boldsymbol{x}(t); t) + \alpha^{x}(t+1)\boldsymbol{A}^{\mathsf{T}}g_{\text{out}}(\boldsymbol{z}(t), \boldsymbol{y}; t)$$

$$\boldsymbol{z}(t+1) = \boldsymbol{A}g_{\text{in}}(\boldsymbol{x}(t+1); t+1) - \alpha^{\boldsymbol{z}}(t+1)g_{\text{out}}(\boldsymbol{z}(t), \boldsymbol{y}; t)$$

Suppose empirical distribution of x converges to law of $X \sim P_X$. Then as $n \to \infty$: Asymptotics of i.i.d Gaussian GAMP

$$x \longrightarrow A$$
 $z = Ax \rightarrow q(z, \varepsilon)$ $y = q(z, \varepsilon)$

$$\boldsymbol{x}(t+1) = g_{\text{in}}(\boldsymbol{x}(t); t) + \alpha^{x}(t+1)\boldsymbol{A}^{\mathsf{T}}g_{\text{out}}(\boldsymbol{z}(t), \boldsymbol{y}; t)$$

$$\boldsymbol{z}(t+1) = \boldsymbol{A}g_{\text{in}}(\boldsymbol{x}(t+1); t+1) - \alpha^{\boldsymbol{z}}(t+1)g_{\text{out}}(\boldsymbol{z}(t), \boldsymbol{y}; t)$$

Suppose empirical distribution of **x** converges to law of $X \sim P_X$. Then as $n \to \infty$:

The empirical distribution of (x, x(t)) converges to the law of

 $[X, \mu(t)X + W(t)],$ where $W(t) \sim \mathsf{N}(0, au^{ imes}(t))$

[Rangan '11], [Javanmard, Montanari ' 13]

イロト 不得 トイヨト イヨト 二日

Asymptotics of i.i.d Gaussian GAMP

$$x \longrightarrow A$$
 $z = Ax \rightarrow q(z, \varepsilon)$ $y = q(z, \varepsilon)$

$$\boldsymbol{x}(t+1) = g_{\text{in}}(\boldsymbol{x}(t); t) + \alpha^{x}(t+1)\boldsymbol{A}^{\mathsf{T}}g_{\text{out}}(\boldsymbol{z}(t), \boldsymbol{y}; t)$$

$$\boldsymbol{z}(t+1) = \boldsymbol{A}g_{\text{in}}(\boldsymbol{x}(t+1); t+1) - \alpha^{\boldsymbol{z}}(t+1)g_{\text{out}}(\boldsymbol{z}(t), \boldsymbol{y}; t)$$

Suppose empirical distribution of **x** converges to law of $X \sim P_X$. Then as $n \to \infty$:

The empirical distribution of (z, z(t)) converges to the law of

 $[Z, Z(t)] \sim N(0, \Lambda(t))$

3

イロト イヨト イヨト

State Evolution

The empirical distribution of $(\mathbf{x}, \mathbf{x}(t))$ converges to the law of $[X, \mu(t)X + W(t)]$, where $W(t) \sim N(0, \tau^{x}(t))$ The empirical distribution of $(\mathbf{z}, \mathbf{z}(t))$ converges to the law of $[Z, Z(t)] \sim N(0, \Lambda(t))$

 $\mu(t), \tau^{x}(t), \Lambda(t)$ computed via state evolution recursion: $[\mu(t), \tau^{x}(t), \Lambda(t)] \longrightarrow [\mu(t+1), \tau^{x}(t+1), \Lambda(t+1)]$

State Evolution

The empirical distribution of $(\mathbf{x}, \mathbf{x}(t))$ converges to the law of $[X, \mu(t)X + W(t)]$, where $W(t) \sim N(0, \tau^{x}(t))$ The empirical distribution of $(\mathbf{z}, \mathbf{z}(t))$ converges to the law of $[Z, Z(t)] \sim N(0, \Lambda(t))$

 $\mu(t), \tau^{x}(t), \Lambda(t)$ computed via state evolution recursion:

 $[\mu(t), \tau^{\mathsf{x}}(t), \Lambda(t)] \longrightarrow [\mu(t+1), \tau^{\mathsf{x}}(t+1), \Lambda(t+1)]$

- State evolution depends on g_{in} and g_{out}
- Analogous to density evolution for LDPC codes

Bayes GAMP

Asymptotic MSE: For $t \ge 1$,

$$\lim_{n\to\infty}\frac{1}{n}\|\boldsymbol{x}-g_{\text{in}}(\boldsymbol{x}(t))\|^2 = \mathbb{E}\{[X-g_{\text{in}}(\mu(t)X+W(t))]^2\}$$

Bayes GAMP

Asymptotic MSE: For $t \ge 1$, $\lim_{n \to \infty} \frac{1}{n} \| \mathbf{x} - g_{in}(\mathbf{x}(t)) \|^2 = \mathbb{E}\{ [X - g_{in}(\mu(t)X + W(t))]^2 \}$

Bayes-optimal choice of gin:

 $g_{\mathsf{in}}^*(X(t)) = \mathbb{E}[X \mid \mu(t) X + W(t) = X(t)]$

 $g_{in}^*(\mathbf{x}(t))$ is the MMSE estimate of \mathbf{x} given $\mathbf{x}(t)$

$$\lim_{n\to\infty}\frac{1}{n}\|\boldsymbol{x}-\boldsymbol{g}_{\rm in}^*(\boldsymbol{x}(t))\|^2 = \mathbb{E}\{[X-\boldsymbol{g}_{\rm in}^*(X+W(t))]^2\}, \quad W(t)\sim \mathsf{N}(0,\tau^*(t))$$

Run to "convergence" \Rightarrow MSE determined by $\lim_{t\to\infty} \tau^{x}(t)$

$$\lim_{n\to\infty}\frac{1}{n}\|\boldsymbol{x}-\boldsymbol{g}_{\rm in}^*(\boldsymbol{x}(t))\|^2 = \mathbb{E}\{[X-\boldsymbol{g}_{\rm in}^*(X+W(t))]^2\}, \quad W(t)\sim \mathsf{N}(0,\tau^{\mathsf{x}}(t))$$

Run to "convergence" \Rightarrow MSE determined by $\lim_{t\to\infty} \tau^{x}(t)$

State evolution Given $\tau^{x}(t)$, compute: $\tau^{z}(t) = \frac{1}{\delta} \text{mmse}(\tau^{x}(t))$ $\tau^{x}(t+1) = \tau^{z}(t) \left[1 - \frac{1}{\tau^{x}(t)} \mathbb{E}\{\text{Var}(Z \mid Z(t), Y)\}\right]^{-1}$

$$\lim_{n\to\infty}\frac{1}{n}\|\boldsymbol{x}-\boldsymbol{g}_{\rm in}^*(\boldsymbol{x}(t))\|^2 = \mathbb{E}\{[X-\boldsymbol{g}_{\rm in}^*(X+W(t))]^2\}, \quad W(t)\sim \mathsf{N}(0,\tau^{\mathsf{x}}(t))$$

Run to "convergence" \Rightarrow MSE determined by $\lim_{t\to\infty} \tau^{x}(t)$

State evolution Given $\tau^{x}(t)$, compute: $\tau^{z}(t) = \frac{1}{\delta} \text{mmse}(\tau^{x}(t))$ $\tau^{x}(t+1) = \tau^{z}(t) \left[1 - \frac{1}{\tau^{x}(t)} \mathbb{E}\{\text{Var}(Z \mid Z(t), Y)\}\right]^{-1}$

Can determine $\lim_{t\to\infty} \tau^x(t)$ via potential function $U(x; \delta)$

・ロット (日) ・ (日) ・ (日)

$$\tau^{z}(t) = \frac{1}{\delta} \mathsf{mmse}(\tau^{x}(t))$$

$$\tau^{x}(t+1) = \tau^{z}(t) \Big[1 - \frac{1}{\tau^{x}(t)} \mathbb{E}\{\mathsf{Var}(Z \mid Z(t), Y)\} \Big]^{-1}$$

Proposition

$$\lim_{t\to\infty}\lim_{n\to\infty}\frac{1}{n}\|\boldsymbol{x}-\bar{\boldsymbol{g}}_{\text{in}}^*(\boldsymbol{x}(t);\,t)\|^2$$
$$=\max\left\{x\in[0,\text{Var}(X)]\,:\,\frac{\partial U(x;\delta)}{\partial x}=0\right\}.$$

MSE of Bayes GAMP given by **largest** stationary point of $U(x; \delta)$

23 / 36

3

≣ ► ≡ ∽ < (~ 23 / 36

Can we get the MSE of GAMP to approach global minimum? = $-\infty$

Spatially coupled sensing matrix

 $A_{jk} \sim N(0, W_{rc})$ for $j \in block r$ and $k \in block c$ W_{rc} chosen so that each column of **A** has $\mathbb{E}[squared-norm] = 1$

[Donoho, Javanmard, Montanari '13] [Barbier and Krzakala '17] [Liang, Ma and Ping '17] [Hsieh, Rush, V '21] ... High-level idea

Each little block an iid sensing matrix that multiplies a section of xFirst and last sections have observations with less interference \Rightarrow Can be recovered more easily \Rightarrow helps recover adjacent sections

Decoding wave

Spatially coupled GAMP

$$x \longrightarrow A$$
 $z = Ax \rightarrow q(z, \varepsilon) \rightarrow y = q(z, \varepsilon)$

$$\mathbf{x}(t+1) = g_{in}(\mathbf{x}(t), \mathbf{c}; t) + \boldsymbol{\alpha}^{\mathsf{x}}(t+1) \odot \mathbf{A}^{\mathsf{T}} g_{out}(\mathbf{z}(t), \mathbf{y}, \mathbf{r}; t)$$

$$\boldsymbol{z}(t+1) = \boldsymbol{A}g_{\text{in}}(\boldsymbol{x}(t+1), \boldsymbol{c}; t+1) - \boldsymbol{\alpha}^{\boldsymbol{z}}(t+1) \odot g_{\text{out}}(\boldsymbol{z}(t), \boldsymbol{y}, \boldsymbol{r}; t)$$

 \blacktriangleright g_{in} and g_{out} now depend on the column and row section

Spatially coupled GAMP

$$x \longrightarrow A \xrightarrow{z = Ax} q(z, \varepsilon) \longrightarrow y = q(z, \varepsilon)$$

$$\mathbf{x}(t+1) = g_{in}(\mathbf{x}(t), \mathbf{c}; t) + \boldsymbol{\alpha}^{\mathsf{x}}(t+1) \odot \mathbf{A}^{\mathsf{T}} g_{out}(\mathbf{z}(t), \mathbf{y}, \mathbf{r}; t)$$

$$\boldsymbol{z}(t+1) = \boldsymbol{A}g_{\text{in}}(\boldsymbol{x}(t+1), \boldsymbol{c}; t+1) - \boldsymbol{\alpha}^{\boldsymbol{z}}(t+1) \odot g_{\text{out}}(\boldsymbol{z}(t), \boldsymbol{y}, \boldsymbol{r}; t)$$

Asymptotics of SC-GAMP

Asymptotics of SC-GAMP

The empirical distribution of $(\mathbf{x}_{c}, \mathbf{x}_{c}(t))$ converges to the law of $[X, X + W_{c}(t)]$, where $W(t) \sim N(0, \tau_{c}^{\times}(t))$ for c = 1, ..., CThe empirical distribution of $(\mathbf{z}_{r}, \mathbf{z}_{r}(t))$ converges to the law of $[Z_{r}, Z_{r}(t)] \sim N(0, \Lambda_{r}(t))$ for r = 1, ..., R

28 / 36

SC-GAMP Performance

State evolution has C + R parameters:

$$\{ \tau_1^{\mathsf{x}}(t), \dots, \tau_{\mathsf{C}}^{\mathsf{x}}(t), \, \Lambda_1(t), \dots, \Lambda_{\mathsf{R}}(t) \} \longrightarrow \{ \tau_1^{\mathsf{x}}(t+1), \dots, \tau_{\mathsf{C}}^{\mathsf{x}}(t+1), \, \Lambda_1(t+1), \dots, \Lambda_{\mathsf{R}}(t+1) \}$$

SC-GAMP Performance

State evolution has C + R parameters:

$$\{ \tau_1^{\mathsf{x}}(t), \dots, \tau_{\mathsf{C}}^{\mathsf{x}}(t), \Lambda_1(t), \dots, \Lambda_{\mathsf{R}}(t) \} \longrightarrow \{ \tau_1^{\mathsf{x}}(t+1), \dots, \tau_{\mathsf{C}}^{\mathsf{x}}(t+1), \Lambda_1(t+1), \dots, \Lambda_{\mathsf{R}}(t+1) \}$$

Theorem (Asymptotic MSE): For $t \ge 1$

$$\lim_{n\to\infty}\frac{1}{n}\|\boldsymbol{x}-g_{\rm in}^*(\boldsymbol{x}(t))\|^2 = \frac{1}{C}\sum_{\rm c=1}^{C}\mathbb{E}\{[X-g_{\rm in}^*(X+W_{\rm c}(t),{\rm c})]^2\}$$

where $W_{\mathsf{c}}(t) \sim \mathsf{N}(0, au_{\mathsf{c}}^{\scriptscriptstyle X}(t))$

$$\lim_{n \to \infty} \frac{1}{n} \| \mathbf{x} - g_{\text{in}}^*(\mathbf{x}(t)) \|^2 = \frac{1}{C} \sum_{c=1}^C \mathbb{E} \{ [X - g_{\text{in}}^*(X + W_c(t), c)]^2 \}$$

where $W_c(t) \sim N(0, \tau_c^*(t))$

Run SC-GAMP to convergence \Rightarrow MSE determined by $\lim_{t\to\infty} \{\tau_1^x(t), \dots, \tau_c^x(t)\}$

How to determine fixed points of this coupled recursion?

$$\lim_{n \to \infty} \frac{1}{n} \| \mathbf{x} - g_{\text{in}}^*(\mathbf{x}(t)) \|^2 = \frac{1}{\mathsf{C}} \sum_{\mathsf{c}=1}^{\mathsf{C}} \mathbb{E} \{ [X - g_{\text{in}}^*(X + W_\mathsf{c}(t), \mathsf{c})]^2 \}$$

where $W_\mathsf{c}(t) \sim \mathsf{N}(0, \tau_\mathsf{c}^*(t))$

Run SC-GAMP to convergence \Rightarrow MSE determined by $\lim_{t\to\infty} \{\tau_1^x(t), \dots, \tau_c^x(t)\}$

How to determine fixed points of this coupled recursion?

[Yedla et al. '14]: A simple proof of Maxwell saturation for coupled scalar recursions

Theorem (Fixed point of SC-GAMP): Fix $\gamma > 0$. Then for $\omega > \omega_0$ and $t > t_0$:

$$\begin{split} \lim_{n \to \infty} \frac{1}{n} \| \boldsymbol{x} - \boldsymbol{g}_{\text{in}}^*(\boldsymbol{x}(t); t) \|^2 \\ &\leq \left(\underset{\boldsymbol{x} \in [0, \text{Var}(\boldsymbol{X})]}{\text{arg min}} U(\boldsymbol{x}; \delta_{\text{in}}) + \gamma \right) \frac{\mathsf{C} + \omega}{\mathsf{C}} \end{split}$$

Here $\delta_{in} = \delta \frac{C}{R}$ is the inner sampling ratio.

Corollary (Bayes optimality of SC-GAMP): Fix $\epsilon > 0$. Then for $\omega > \omega_0$, sufficiently large C and $t > t_0$ we have:

$$\lim_{n\to\infty}\frac{1}{n}\|\boldsymbol{x} - g_{\text{in}}^*(\boldsymbol{x}(t); t)\|^2 \leq \arg\min_{\boldsymbol{x}\in[0, \text{Var}(\boldsymbol{X})]} U(\boldsymbol{x}; \delta) + \epsilon.$$

Analogous to threshold saturation in SC-LDPC codes

33 / 36

Phase retrieval

$$y = |Ax|^2$$
 Prior $P_X(-a) = 0.4$, $P_X(a) = 0.6$

34 / 36

ReLU model

 $y = \max(Ax, 0)$ Prior $P_X(-b) = P_X(b) = 0.25, P_X(0) = 0.5$

35 / 36

$$x \longrightarrow A$$
 $z = Ax \rightarrow q(z, \varepsilon) \rightarrow y = q(z, \varepsilon)$

Performance of optimal estimator with iid Gaussian design achieved by *spatially coupled design with message passing estimator*

Future directions

Spatial coupling with structured random matrices

- E.g., Fourier, DCT, Hadamard based matrices
- Enables faster AMP-like algorithms