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Generalized Linear Models

x A q(z , ε)
z = Ax y = q(z , ε)

ε

GOAL:

I Estimate signal x ∈ Rn from observations y ≡ (y1, . . . , ym)

I Known sensing matrix A ∈ Rm×n and output function q
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Examples

x A q(z , ε)
z = Ax y = q(z , ε)

ε

I Linear model y = Ax + ε

I 1-bit compressed sensing y = sign(Ax + ε)

I Phase retrieval y = |Ax |2 + ε

X-ray crystallography Microscopy Interferometry
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x A q(z , ε)
z = Ax y = q(z , ε)

ε

A =

←− a1 −→
...

←− am −→

 ∈ Rm×n

High-dimensional regime
m
n → δ as m, n→∞
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Bayesian setting

x A q(z , ε)
z = Ax y = q(z , ε)

ε

Suppose:

I x ∼ PX and ε ∼ Pε

I A also generated from known distribution

Bayes-optimal estimator that minimizes MSE: E{x | A, y}

MMSEn :=
1

n
E{‖x − E{x | A, y}‖2}.
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Two natural questions

x A q(z , ε)
z = Ax y = q(z , ε)

ε

MMSEn :=
1

n
E{‖x − E{x | A, y}‖2}.

1. What is limn→∞MMSEn ? (for a fixed δ = lim m
n )

2. How can we design efficient estimators whose error
approaches lim MMSEn ?
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Asymptotic MMSE

x A q(z , ε)
z = Ax y = q(z , ε)

ε

I For iid Gaussian A with Aij ∼ N(0, 1n )

I Signal x iid ∼ PX and noise ε iid ∼ Pε

[Barbier et al. ’19]: Formula for asymptotic MMSE in terms of a
scalar potential function U(x ; δ)

lim
n→∞

MMSEn = arg min
x∈[0,Var(X )]

U(x ; δ)

lim
n→∞

1

n
I (X ; Y ) = min

x∈[0,Var(X )]
a U(x ; δ) + b

Barbier et al. , Optimal errors and phase transitions in high-dimensional
GLMs, PNAS, 2019 7 / 36



Example: Phase Retrieval

y = |Ax |2 Prior PX (−a) = 0.4, PX (a) = 0.6

U(x ; δ) vs x
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MMSE: Phase retrieval
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= m/n
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Can we achieve this with efficient estimators?

9 / 36



Estimators

I Convex relaxations

I Iterative algorithms for non-convex objectives:

Alternating minimization, gradient descent, . . .

I Spectral methods

Generic techniques: can incorporate certain constraints like sparsity

But not well-equipped to exploit specific structural info about
signal, e.g., known prior

Phase retrieval: [Netrapalli et al. ’13], [Candes et al. ’13], [Luo et al. ’19],
[Mondelli & Montanari ’19], . . .

1-bit CS: [Plan & Vershynin ’13], [Jacques et al. ’13], . . .
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Approximate Message Passing

x A q(z , ε)
z = Ax y = q(z , ε)

ε

Estimator based on AMP

I Can be tailored to take advantage of prior info about signal

I Rigorous performance characterization via state evolution

Allows us to precisely compute asymptotic MSE

GAMP [Rangan ’11]: for GLMs with i.i.d. Gaussian A
– Conjectured to be optimal among poly-time estimators

[Javanmard & Montanari ’13], [Schniter & Rangan ’14], . . .
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AMP vs MMSE estimator
Phase retrieval with i.i.d. Gaussian A

y = |Ax |2 Prior : PX (−a) = 0.4, PX (a) = 0.6
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Parallel with coding theory
Consider a rate R = 1

2 regular LDPC code. E.g.,

IEEE Communications Magazine • July 2014170

resented by a bi-infinite parity check matrix, rep-
resented by Eq. 1, composed of a diagonal band
of (c – b) × c submatrices Hi(t), 0 £ i £ ms, t = 0,
1, 2, …, where the rows and columns of Hcc are
sparse; in other words, they contain a small
number of non-zero entries. If Hcc contains only
zeros and ones, the code is binary; otherwise, it
is non-binary. The syndrome former memory is
denoted by ms, where ms + 1 is the width of
each row in submatrices, and ns = (ms + 1)c,
the width of each row in symbols, is called the
decoding constraint length. If Hcc contains a fixed
number J of ones in each column and a fixed
number K of ones in each row, it represents a (J,
K)-regular LDPC-CC; otherwise, the code is
irregular. In general, Hcc describes a time-varying
LDPC-CC, and if the rows of Hcc vary periodi-
cally, the code is periodically time-varying. If the
rows of Hcc do not vary with time, the code is
time-invariant.

Using a technique termed unwrapping in [5],
it is possible to take any good LDPC-BC and
unwrap it to form an LDPC-CC with improved
BER performance. The unwrapping procedure
applies cut-and-paste and diagonal matrix exten-
sion operations to the parity check matrix H of
an LDPC-BC to produce a bi-infinite parity-
check matrix Hcc of an LDPC-CC, as illustrated
in Fig. 3a, where H represents a (3, 6)-regular
block code with block length n = 10, and Hcc
represents a (3, 6)-regular convolutional code
with constraint length ns = 10. The bi-infinite
(convolutional) Tanner graph representation of
Hcc is shown in Fig. 3b, and we see that the
unwrapping procedure preserves the graph struc-
ture of the underlying LDPC-BC, that is, all
node degrees remain the same, and the local
connectivity of nodes is unchanged.

Extensive computer simulation results [6]
have verified that for practical code lengths,

LDPC-CCs obtained by unwrapping an LDPC-
BC achieve a substantial convolutional gain com-
pared to the underlying LDPC-BC, where both
codes have the same computational complexity
with iterative decoding, and the block length of
the LDPC-BC equals the constraint length of
the LDPC-CC. An example illustrating this con-
volutional gain is shown in Fig. 4.

Even though the Tanner graph representa-
tion of an LDPC-CC extends infinitely both for-
ward and backward in time, in practice there is
always some finite starting and ending time; that
is, the Tanner graph is terminated at both the
beginning and the end (Fig. 3c). A remarkable
feature of this graph termination, first noted
numerically in the paper by Lentmaier et al. [7]
for both the binary erasure channel (BEC) and
the AWGNC, and then shown analytically (for
the BEC) by Kudekar et al., [8], is the so-called
threshold saturation effect. Consider for purposes
of illustration the (3, 6)-regular LDPC-BC
ensemble with AWGNC iterative BP decoding
threshold Eb/N0 = 1.11 dB, which is also the
threshold of the associated (unterminated)
LDPC-CC ensemble. As the graph termination
length L becomes large, the threshold of the
(terminated) LDPC-CC ensemble improves all
the way to 0.46 dB, the threshold of the (3, 6)-
regular LDPC-BC ensemble with ML decoding.4
In other words, terminated LDPC-CCs with BP
decoding are capable of achieving the same per-
formance as comparable LDPC-BCs with (much
more complex, and impractical) ML decoding!
This “step-up” of the BP threshold to the ML
threshold is referred to as threshold saturation.
Note that, after termination, the LDPC-CC code
ensemble can be viewed as an LDPC-BC ensem-
ble with block length n = (ms + 1)cL = nsL.
However, compared to typical LDPC-BC designs
that have no restrictions on the location of the
ones in the parity-check matrix and hence allow
connections across the entire graph, the LDPC-
CC code ensemble has a highly localized graph
structure, since the non-zero portion of the pari-
ty-check matrix is restricted to a diagonal band
of width ns. We will see later that this structure,
in addition to yielding excellent iterative decod-
ing thresholds, also gives rise to an efficient
decoder implementation.

Threshold saturation is a result of the termi-
nation, which introduces a slight structured
irregularity in the graph. Termination has the
effect of introducing lower constraint node
degrees (i.e., a structured irregularity) at each
end of the graph (Fig. 3c). In the context of iter-
ative BP decoding, the smaller degree constraint
nodes pass more reliable messages to neighbor-
ing variable nodes, and this effect propagates

Figure 2. a) Parity-check matrix of a (3, 6)-regular LDPC-BC with block
length n = 10; b) the associated (3, 6)-regular Tanner graph. The green
circles represent code bits, or variable nodes; the open circles � represent
parity checks, or constraint nodes, and the darkened edges represent a
cycle of length 4.
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Used over channel with erasure probability ε
ε

εBP εML 1
2

εBP: Threshold with belief propagation decoding

εML: Threshold with optimal (ML) decoding

Figure from Costello et al. Spatially coupled sparse codes on graphs:
theory and practice, 2014
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Closing the gap: Can make εBP approach εML with
spatially coupled code [Kudekar et al. ’14]

IEEE Communications Magazine • July 2014 171

throughout the graph as iterations increase. This
results in BP thresholds for terminated LDPC-
CC ensembles that, for large enough degree
densities (J and K for regular codes), actually
achieve capacity as the constraint length ns and
termination length L go to infinity. In addition,
for regular LDPC-CCs, the terminated (slightly
irregular) ensembles are still asymptotically good
in the sense that their minimum distance grows
linearly with block length n.

The net result of these effects is captured in
Fig. 5, which illustrates the trade-offs between
the AWGNC BP decoding threshold (in Eb/N0),
the minimum distance growth rate (dmin/n), and
the code rate (R) for several (J, 2J)-regular ter-
minated LDPC-CC ensembles as a function of
the termination length L. We observe that, in

general, as the termination length L increases,
the LDPC-CC rate approaches the rate of the
underlying LDPC-BC and, in contrast to (J, 2J)-
regular LDPC-BC ensembles, the BP thresholds
of the terminated LDPC-CC ensembles
approach capacity as J increases.5 Also, linear
distance growth is maintained for any finite
value of L. In addition to regular ensembles, Fig.
5 also includes terminated LDPC-CC ensembles
based on the irregular ARJA codes designed by
Divsalar et al. [9], an irregular LDPC-BC ensem-
ble with linear distance growth and better thresh-
olds than comparable regular ensembles.
(Irregular LDPC-BC ensembles with optimized
degree profiles already have thresholds close to
capacity, and they do not possess linear distance
growth, so little is to be gained by applying the

Figure 3. a) An illustration of the unwrapping procedure for a (3, 6)-regular LDPC-BC; b) the Tanner
graph associated with the unwrapped (3, 6)-regular LDPC-CC; c) the terminated Tanner graph asso-
ciated with the unwrapped (3, 6)-regular LDPC-CC.
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Threshold saturation
is a result of the ter-

mination, which
introduces a slight

structured irregularity
in the graph. Termi-
nation has the effect
of introducing lower

constraint node
degrees, that is, a

structured irregulari-
ty, at each end of

the graph.

5 The BP thresholds of the
terminated LDPC-CC
ensembles are approach-
ing the ML thresholds of
the underlying LDPC-BC
ensembles, which
approach capacity as J
increases.
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LDPC codes

Rate R

Regular parity check matrix

BP decoder

Density evolution

GLM

Sampling ratio δ

iid Gaussian sensing matrix

AMP estimator

State evolution
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LDPC codes

Rate R

Regular parity check matrix

BP decoder

Density evolution

εBP, εML

Spatially coupled code

GLM

Sampling ratio δ

iid Gaussian sensing matrix

AMP estimator

State evolution

δAMP, δMMSE

Spatially coupled sensing matrix

Compressed sensing: [Kudekar, Pfister ’10], [Donoho, Javanmard,
Montanari ’13] . . .
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i.i.d. Gaussian GAMP

x A q(z , ε)
z = Ax y = q(z , ε)

ε

Iteratively produces estimates x(t) and z(t) for t ≥ 0 via:

gin(· ; t) : R→ R, gout(· , y ; t) : R2 → R
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x A q(z , ε)
z = Ax y = q(z , ε)

ε

Iteratively produces estimates x(t) and z(t) for t ≥ 0 via:

gin(· ; t) : R→ R, gout(· , y ; t) : R2 → R

x(t + 1) = gin(x(t) ; t) + αx(t + 1)ATgout(z(t), y ; t)

z(t + 1) = Agin(x(t + 1) ; t + 1) − αz(t + 1)gout(z(t), y ; t)

[Feng et al. ’22]: A unifying tutorial on Approximate Message Passing
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i.i.d. Gaussian GAMP

x(t + 1) = gin(x(t) ; t) + αx(t + 1)ATgout(z(t), y ; t)

z(t + 1) = Agin(x(t + 1) ; t + 1) − αz(t + 1)gout(z(t), y ; t)

I gin and gout applied row-wise

I gin, gout Lipschitz, allow us to tailor the algorithm

I Initialized with x0 and z(0) = Ax0

I Coefficients αx(t) and αz(t) defined in terms of gin
′ and gout

′
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Asymptotics of i.i.d Gaussian GAMP

x A q(z , ε)
z = Ax y = q(z , ε)

x(t + 1) = gin(x(t) ; t) + αx(t + 1)ATgout(z(t), y ; t)

z(t + 1) = Agin(x(t + 1) ; t + 1) − αz(t + 1)gout(z(t), y ; t)

Suppose empirical distribution of x converges to law of X ∼ PX .
Then as n→∞:

[Rangan ’11], [Javanmard, Montanari ’ 13]
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State Evolution

The empirical distribution of (x , x(t)) converges to the law of

[X , µ(t)X + W (t)], where W (t) ∼ N(0, τ x(t))

The empirical distribution of (z , z(t)) converges to the law of

[Z , Z (t)] ∼ N(0,Λ(t))

µ(t), τ x(t), Λ(t) computed via state evolution recursion:

[µ(t), τ x(t), Λ(t)] −→ [µ(t + 1), τ x(t + 1), Λ(t + 1)]

I State evolution depends on gin and gout
I Analogous to density evolution for LDPC codes
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Bayes GAMP

Asymptotic MSE: For t ≥ 1,

lim
n→∞

1

n
‖x − gin(x(t))‖2 = E{[X − gin(µ(t)X + W (t))]2}

I Bayes-optimal choice of gin:

g∗in(X (t)) = E[X | µ(t)X + W (t) = X (t)]

g∗in(x(t)) is the MMSE estimate of x given x(t)

I Can also determine Bayes-optimal g∗out

[Rangan ’11], [Javanmard, Montanari ’ 13]
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Fixed points of Bayes GAMP

lim
n→∞

1

n
‖x−g∗in(x(t))‖2 = E{ [X−g∗in(X+W (t))]2}, W (t) ∼ N(0, τ x(t))

Run to “convergence” ⇒ MSE determined by limt→∞ τ x(t)

State evolution

Given τ x(t), compute:

τ z(t) =
1

δ
mmse

(
τ x(t)

)
τ x(t + 1) = τ z(t)

[
1− 1

τ x(t)
E{Var(Z | Z (t), Y )}

]−1

Can determine limt→∞ τ x(t) via potential function U(x ; δ)
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Fixed points of Bayes GAMP

τ z(t) =
1

δ
mmse

(
τ x(t)

)
τ x(t + 1) = τ z(t)

[
1− 1

τ x(t)
E{Var(Z | Z (t), Y )}

]−1

Proposition

lim
t→∞

lim
n→∞

1

n
‖x − ḡ∗in(x(t); t)‖2

= max

{
x ∈ [0,Var(X )] :

∂U(x ; δ)

∂x
= 0

}
.

MSE of Bayes GAMP given by largest stationary point of U(x ; δ)
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Example: Phase Retrieval

y = |Ax |2 Prior PX (−a) = 0.4, PX (a) = 0.6

U(x ; δ) vs x
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Example: Phase Retrieval

y = |Ax |2 Prior PX (−a) = 0.4, PX (a) = 0.6
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= m/n
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Can we get the MSE of GAMP to approach global minimum?
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Spatially coupled sensing matrix

Sensing matrix A

m
R

m

n/C
n

Base matrix W

R

C

Ajk ∼ N(0,Wrc) for j ∈ block r and k ∈ block c

Wrc chosen so that each column of A has E[squared-norm] = 1

[Donoho, Javanmard, Montanari ’13] [Barbier and Krzakala ’17] [Liang,
Ma and Ping ’17] [Hsieh, Rush, V ’21] . . .
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High-level idea

x A q(z , ε)
z = Ax y = q(z , ε)

m
R

n/C

Base matrix W

R = C + ω − 1

C

Each little block an iid sensing matrix that multiplies a section of x
First and last sections have observations with less interference ⇒
Can be recovered more easily ⇒ helps recover adjacent sections
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Decoding wave

Spatially coupled matrix with C = 40, ω = 6

0 5 10 15 20 25 30 35 40
Column block index c
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t=35
t=38
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Spatially coupled GAMP

x A q(z , ε)
z = Ax y = q(z , ε)

x(t + 1) = gin(x(t), c ; t) + αx(t + 1)� ATgout(z(t), y , r ; t)

z(t + 1) = Agin(x(t + 1), c ; t + 1) − αz(t + 1)� gout(z(t), y , r ; t)

I gin and gout now depend on the column and row section

I αx(t + 1) = [ αx
1(t + 1), . . . , αx

C(t + 1) ]

I αz(t + 1) = [ αz
1(t + 1), . . . , αz

R(t + 1) ]
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Asymptotics of SC-GAMP

m
R

n/C

Base matrix W

R = C + ω − 1

C

The empirical distribution of (xc, xc(t)) converges to the law of

[X , X + Wc(t)], where W (t) ∼ N(0, τ xc (t))

for c = 1, . . . ,C

The empirical distribution of (z r, z r(t)) converges to the law of

[Zr, Zr(t)] ∼ N(0,Λr (t))

for r = 1, . . . ,R
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SC-GAMP Performance

State evolution has C + R parameters:

{τ x1 (t), . . . , τ xC(t), Λ1(t), . . . ,ΛR(t)} −→
{τ x1 (t + 1), . . . , τ xC(t + 1), Λ1(t + 1), . . . ,ΛR(t + 1)}

Theorem (Asymptotic MSE): For t ≥ 1

lim
n→∞

1

n
‖x − g∗in(x(t))‖2 =

1

C

C∑
c=1

E{ [X − g∗in(X + Wc(t), c)]2 }

where Wc(t) ∼ N(0, τ xc (t))
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Fixed points of Bayes SC-GAMP

lim
n→∞

1

n
‖x − g∗in(x(t))‖2 =

1

C

C∑
c=1

E{ [X − g∗in(X + Wc(t), c)]2 }

where Wc(t) ∼ N(0, τ xc (t))

Run SC-GAMP to convergence ⇒ MSE determined by
limt→∞ {τ x1 (t), . . . , τ xC(t)}

How to determine fixed points of this coupled recursion?

[Yedla et al. ’14]: A simple proof of Maxwell saturation for coupled
scalar recursions
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m
R

n/C

Base matrix W

R = C + ω − 1

C

Theorem (Fixed point of SC-GAMP): Fix γ > 0. Then for ω > ω0

and t > t0:

lim
n→∞

1

n
‖x − g∗in(x(t); t)‖2

≤

(
arg min

x∈[0,Var(X )]
U(x ; δin) + γ

)
C + ω

C
.

Here δin = δ CR is the inner sampling ratio.
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m
R

n/C

Base matrix W

R = C + ω − 1

C

Corollary (Bayes optimality of SC-GAMP): Fix ε > 0. Then for
ω > ω0, sufficiently large C and t > t0 we have:

lim
n→∞

1

n
‖x − g∗in(x(t); t)‖2 ≤ arg min

x∈[0,Var(X )]
U(x ; δ) + ε.

Analogous to threshold saturation in SC-LDPC codes
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Example: Phase Retrieval

y = |Ax |2 Prior PX (−a) = 0.4, PX (a) = 0.6

U(x ; δ) vs x
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Phase retrieval

y = |Ax |2 Prior PX (−a) = 0.4, PX (a) = 0.6
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= m/n
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ReLU model

y = max
(
Ax , 0

)
Prior PX (−b) = PX (b) = 0.25, PX (0) = 0.5
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x A q(z , ε)
z = Ax y = q(z , ε)

Performance of optimal estimator with iid Gaussian design achieved
by spatially coupled design with message passing estimator

Future directions

Spatial coupling with structured random matrices

– E.g., Fourier, DCT, Hadamard based matrices

– Enables faster AMP-like algorithms
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