Seeking information-theoretic bounds that explain generalization

Giuseppe Durisi

Chalmers, Sweden

Information Theory and Tapas Workshop

Jan., 2023

CHALMERS

Joint work with Fredrik Hellström

Generalization performance of deep neural networks

• State of the art in many fields

One of many mysteries

Why do DNN generalize despite being largely overparameterized?

A complex problem that can be tackled from many angles...

This talk

- Focus on information theoretic bounds
- Tutorial overview + recent results
- Numerically tight bounds but the question remains open

Supervised-learning setup

Supervised-learning setup

• z = (x, y); x instance; y: label, w(x): prediction; example: $x = \mathfrak{B}, y = \mathsf{bicycle}, w(\mathfrak{B}) = \mathsf{car}$

- $\ell(\cdot, \cdot)$: nonnegative loss function; $\ell(w(x), y) \triangleq \ell(w; z)$
- $Z^n = [Z_1, \ldots, Z_n]$: i.i.d. $\sim P_Z$ training data
- $L_{Z^n}(w) = \frac{1}{n} \sum_{i=1}^n \ell(w; Z_i)$: training loss; $L_{P_Z}(w) = \mathbb{E}_{P_Z}[\ell(w; Z)]$: population loss

• z = (x, y); x instance; y: label, w(x): prediction; example: $x = \mathfrak{B}, y = \mathsf{bicycle}, w(\mathfrak{B}) = \mathsf{car}$

- $\ell(\cdot, \cdot)$: nonnegative loss function; $\ell(w(x), y) \triangleq \ell(w; z)$
- $Z^n = [Z_1, \ldots, Z_n]$: i.i.d. $\sim P_Z$ training data
- $L_{Z^n}(w) = \frac{1}{n} \sum_{i=1}^n \ell(w; Z_i)$: training loss; $L_{P_Z}(w) = \mathbb{E}_{P_Z}[\ell(w; Z)]$: population loss

Generalization problem: Under which conditions is $L_{P_Z}(w)$ close to $L_{Z^n}(w)$?

Probably approximately correct (PAC) learnability

- W: set of prediction rules (hypothesis class)
- $c(\mathcal{W})$: "complexity" of \mathcal{W}

Probably approximately correct (PAC) learnability

- W: set of prediction rules (hypothesis class)
- $c(\mathcal{W})$: "complexity" of \mathcal{W}

A vacuous bound

- CIFAR-10, convolutional neural network with $c(\mathcal{W}) pprox 10^7$
- Classification using 0–1 loss
- $n\approx 10^4$ suffices for good empirical performance but PAC bound is ≥ 1

Seeking nonvacuous bounds: the PAC-Bayes approach

PAC bounds for DNN

- Vacuous because the complexity term depends on the entire class ${\cal W}$
- · Seek instead bounds with complexity term that depends on the prediction rule

Seeking nonvacuous bounds: the PAC-Bayes approach

PAC bounds for DNN

- Vacuous because the complexity term depends on the entire class $\ensuremath{\mathcal{W}}$
- · Seek instead bounds with complexity term that depends on the prediction rule

PAC-Bayes approach

- Originally proposed in [McAllester, '98–'99 & Shawe-Taylor & Williamson, '98]
- Prediction rule modeled as Markov kernel (posterior) $P_{W \mid Z^n}$
- Prior Q_W is also available, used to embed a priori knowledge, or impose structure on prediction
- Objective: establish high-probability bounds on the average (over posterior) generalization gap

 $\mathbb{E}_{P_W \mid Z^n} \left[L_{P_Z}(W) - L_{Z^n}(W) \right]$

- Available results scattered in many publication venues (outside IT)
- See [Alquier, arXiv 2021] for a recent primer on PAC-Bayes

Some PAC-Bayes bounds (bounded $\ell(\cdot, \cdot)$)

McAllester "square-root" bound [McAllester, 1999]

For a given Q_W the following bound holds with prob. $1-\delta$ w.r.t. P_{Z^n}

$$\mathbb{E}_{P_{W|Z^{n}}}[L_{P_{Z}}(W)] \leq \mathbb{E}_{P_{W|Z^{n}}}[L_{Z^{n}}(W)] + \underbrace{\sqrt{\frac{1}{2(n-1)} \left[\frac{D(P_{W|Z^{n}} || Q_{W}) + \log \frac{\sqrt{n}}{\delta} \right]}}_{\text{penalty term}}$$

uniformly over all posterior distributions $P_{W \mid Z^n}$

Some PAC-Bayes bounds (bounded $\ell(\cdot, \cdot)$)

McAllester "square-root" bound [McAllester, 1999]

For a given Q_W the following bound holds with prob. $1-\delta$ w.r.t. P_{Z^n}

$$\mathbb{E}_{P_{W|Z^{n}}}[L_{P_{Z}}(W)] \leq \mathbb{E}_{P_{W|Z^{n}}}[L_{Z^{n}}(W)] + \underbrace{\sqrt{\frac{1}{2(n-1)} \left[\frac{D(P_{W|Z^{n}} || Q_{W}) + \log \frac{\sqrt{n}}{\delta} \right]}}_{\text{penalty term}}$$

uniformly over all posterior distributions $P_{W \mid Z^n}$

Catoni "linear" bound [Catoni, 2007]

For a given Q_W and for a given $\beta > 0$, the following bound holds with prob. $1 - \delta$ w.r.t. P_{Z^n}

$$\mathbb{E}_{P_{W \mid Z^{n}}}[L_{P_{Z}}(W)] \leq \frac{1}{1 - e^{-\beta}} \left(\beta \mathbb{E}_{P_{W \mid Z^{n}}}[L_{Z^{n}}(W)] + \frac{D(P_{W \mid Z^{n}} \mid\mid Q_{W}) + \log(1/\delta)}{n}\right)$$

uniformly over all posterior distributions $P_{W \mid Z^n}$

A 3-step proof template [Rivasplata et al., NeurIPS, 2020]

Step 1: concentration bound

• Prove for a suitably chosen convex function $f(\cdot, \cdot)$ that

$$\mathbb{E}_{P_{Z^n}}\left[e^{f\left(L_{P_Z}(w),L_{Z^n}(w)\right)}\right] \leq \beta_n$$

where β_n does not depend on w

• Consequence:

$$\mathbb{E}_{Q_W}\left[\mathbb{E}_{P_{Z^n}}\left[e^{f\left(L_{P_Z}(W), L_{Z^n}(W)\right)}\right]\right] = \mathbb{E}_{P_{Z^n}}\left[\mathbb{E}_{Q_W}\left[e^{f\left(L_{P_Z}(W), L_{Z^n}(W)\right)}\right]\right] \le \beta_n$$

A 3-step proof template

Step 2: change of measure via Donsker-Varadhan

$$\log \mathbb{E}_{Q_{W}}\left[e^{f\left(L_{P_{Z}}(W), L_{Z^{n}}(W)\right)}\right] = \sup_{P_{W \mid Z^{n}}} \left\{ \mathbb{E}_{P_{W \mid Z^{n}}}\left[f\left(L_{P_{Z}}(W), L_{Z^{n}}(W)\right)\right] - D(P_{W \mid Z^{n}} \mid\mid Q_{W})\right\}$$

Consequence: exponential inequality

$$\mathbb{E}_{P_{Z^n}}\left[e^{\sup_{P_W\mid Z^n}\mathbb{E}_{P_W\mid Z^n}\left[f\left(L_{P_Z}(W), L_{Z^n}(W)\right)\right] - D(P_W\mid Z^n\mid\mid Q_W) - \log\beta_n}\right] \le 1$$

A 3-step proof template

A 3-step proof template

Step 3: Chernoff bound

$$P_{Z^{n}}\left[\sup_{P_{W}\mid Z^{n}} \mathbb{E}_{P_{W}\mid Z^{n}}\left[f\left(L_{P_{Z}}(W), L_{Z^{n}}(W)\right)\right] - D(P_{W\mid Z^{n}}\mid\mid Q_{W}) - \log\beta_{n} > \log\frac{1}{\delta}\right] \leq \delta$$

To conclude the proof

- Take complement
- Depending on the choice of $f(\cdot, \cdot)$, use Jensen's inequality

Examples of functions $f(\cdot, \cdot)$

McAllester "square-root" bound

$$\mathbb{E}_{P_{W|Z^{n}}}[L_{P_{Z}}(W)] \leq \mathbb{E}_{P_{W|Z^{n}}}[L_{Z^{n}}(W)] + \sqrt{\frac{1}{2(n-1)}} \left[D(P_{W|Z^{n}} || Q_{W}) + \log \frac{\sqrt{n}}{\delta} \right]$$

Step 1: concentration bound

$$\mathbb{E}_{P_{Z^n}}\left[e^{2\frac{n-1}{n}\left(L_{P_Z}(w)-L_{Z^n}(w)\right)^2}\right] \le n$$

Catoni "linear" bound

$$\mathbb{E}_{P_{W|Z^{n}}}[L_{P_{Z}}(W)] \leq \frac{1}{1 - e^{-\beta}} \left(\beta \mathbb{E}_{P_{W|Z^{n}}}[L_{Z^{n}}(W)] + \frac{D(P_{W|Z^{n}} || Q_{W}) + \log(1/\delta)}{n}\right)$$

Step 1: concentration bound

$$\mathbb{E}_{Z^n} \left[e^{nd_\gamma \left(L_{P_Z}(w) \| L_{Z^n}(w) \right)} \right] \le 1, \text{ with } d_\gamma(p \| q) = \gamma p - \log(1 - q + qe^\gamma)$$

PAC-Bayes bounds and DNN

Catoni "linear" bound

For a given Q_W and for a given $\beta > 0$, the following bound holds with prob. $1 - \delta$ w.r.t. P_{Z^n}

$$\mathbb{E}_{P_{W+Z^n}}[L_{P_Z}(W)] \le \frac{1}{1 - e^{-\beta}} \left(\beta \mathbb{E}_{P_{W+Z^n}}[L_{Z^n}(W)] + \frac{D(P_{W+Z^n} || Q_W) + \log(1/\delta)}{n}\right)$$

uniformly over all posterior distributions $P_{W \mid Z^n}$

- PAC-Bayes bounds can be optimized to find a good posterior $P_{W \mid Z^n}$
- · Applied in many fields to obtain numerical certificates for randomized prediction rules
- DNN: Naïve application of PAC-Bayes yields vacuous bounds
- Solution: data-dependent prior

Data-dependent prior

- Split training data as $Z^n = [Z_p^m, Z_t^{n-m}]$
- Let the prior depend on $Z_p^m \Rightarrow$ data-dependent prior $Q_{W|Z_p^m}$
- Use Z_t^{n-m} to evaluate the training error in the bound
- This approach yields some of the numerically tightest bounds known for randomized DNN

Catoni linear bound with data-dependent prior [Dziugaite et al., AISTATS, 2021] For a given given $\beta > 0$, the following bound holds with prob. $1 - \delta$ w.r.t. P_{Z^n}

$$\mathbb{E}_{P_{W \mid Z^{n}}}[L_{P_{Z}}(W)] \leq \frac{1}{1 - e^{-\beta}} \left(\beta \mathbb{E}_{P_{W \mid Z^{n}}}\left[L_{Z_{t}^{n-m}}(W)\right] + \frac{D(P_{W \mid Z^{n}} \mid\mid Q_{W \mid Z_{p}^{m}}) + \log(1/\delta)}{n - m}\right)$$

Proof: just modify step-1 in our proof template

Step 1: concentration bound

• Prove for a suitably chosen convex function $f(\cdot, \cdot)$ that

$$\mathbb{E}_{P_{\mathbf{Z}_{\mathbf{t}}^{n-m}}}\left[e^{f\left(L_{P_{Z}}(w),L_{\mathbf{Z}_{\mathbf{t}}^{n-m}}(w)\right)}\right] \leq \beta_{n-m}$$

where β_{n-m} does not depend on w

• Consequence:

$$\mathbb{E}_{\boldsymbol{Q}_{\boldsymbol{W}|\boldsymbol{Z}_{p}^{m}\boldsymbol{P}\boldsymbol{Z}_{p}^{m}}}\left[\mathbb{E}_{\boldsymbol{P}_{\boldsymbol{Z}_{t}^{n-m}}}\left[e^{f\left(\boldsymbol{L}_{\boldsymbol{P}_{\boldsymbol{Z}}}(\boldsymbol{W}),\boldsymbol{L}_{\boldsymbol{Z}^{n}}(\boldsymbol{W})\right)}\right]\right] = \mathbb{E}_{\boldsymbol{P}_{\boldsymbol{Z}^{n}}}\left[\mathbb{E}_{\boldsymbol{Q}_{\boldsymbol{W}|\boldsymbol{Z}_{p}^{m}}}\left[e^{f\left(\boldsymbol{L}_{\boldsymbol{P}_{\boldsymbol{Z}}}(\boldsymbol{W}),\boldsymbol{L}_{\boldsymbol{Z}^{n}}(\boldsymbol{W})\right)}\right]\right] \leq \beta_{n}$$

Concluding the proof

Donsker-Varadhan to change measure from $Q_{W|Z_{p}^{m}}$ to $P_{W|Z^{n}}$ and the proceed as before

IT generalization bounds | Giuseppe Durisi

Generalization bounds in the information-theory literature

- [T. Zhang, IT, 2006]: exponential inequalities, optimization of posterior distribution
- [Xu & Raginsky, NeurIPS, 2017]: average (rather than high-probability) generalization bound

$$\mathbb{E}_{P_{W,Z^n}}[L_{P_Z}(W)] \le \mathbb{E}_{P_{W,Z^n}}[L_{Z^n}(W)] + \sqrt{\frac{1}{2n}I(W;Z^n)}$$

- Observation: $I(W; Z^n) = D(P_{W \mid Z^n} \mid \mid P_W \mid P_{Z^n}) \le D(P_{W \mid Z^n} \mid \mid Q_W \mid P_{Z^n})$
- P_W : oracle prior

Step 1: Concentration of measure (unchanged)

• Prove for a suitably chosen convex function $f(\cdot, \cdot)$ that

$$\mathbb{E}_{P_{Z^n}}\left[e^{f\left(L_{P_Z}(w),L_{Z^n}(w)\right)}\right] \leq \beta_n$$

where β_n does not depend on w

• Consequence:

$$\mathbb{E}_{Q_W}\left[\mathbb{E}_{P_{Z^n}}\left[e^{f\left(L_{P_Z}(W), L_{Z^n}(W)\right)}\right]\right] = \mathbb{E}_{P_{Z^n}}\left[\mathbb{E}_{Q_W}\left[e^{f\left(L_{P_Z}(W), L_{Z^n}(W)\right)}\right]\right] \le \beta_n$$

Step 2: change of measure via Donsker-Varadhan (unchanged)

$$\log \mathbb{E}_{Q_{W}}\left[e^{f\left(L_{P_{Z}}(W), L_{Z^{n}}(W)\right)}\right] = \sup_{P_{W \mid Z^{n}}} \mathbb{E}_{P_{W \mid Z^{n}}}\left[f\left(L_{P_{Z}}(W), L_{Z^{n}}(W)\right)\right] - D(P_{W \mid Z^{n}} \mid\mid Q_{W})$$

Consequence: exponential inequality

$$\mathbb{E}_{P_{Z^n}}\left[e^{\sup_{P_W\mid Z^n}\mathbb{E}_{P_W\mid Z^n}\left[f\left(L_{P_Z}(W), L_{Z^n}(W)\right)\right] - D(P_W\mid Z^n\mid\mid Q_W) - \log\beta_n}\right] \le 1$$

Step 3: Jensen's inequality (instead of Chernoff)

$$e^{\mathbb{E}_{P_{Z^n}}\left[\sup_{P_W\mid Z^n}\mathbb{E}_{P_W\mid Z^n}\left[f\left(L_{P_Z}(W), L_{Z^n}(W)\right)\right] - D(P_W\mid Z^n\mid\mid Q_W) - \log\beta_n\right]} <$$

Step 3: Jensen's inequality (instead of Chernoff)

$$\mathbb{E}_{P_{Z^n}}\left[\sup_{P_W \mid Z^n} \mathbb{E}_{P_W \mid Z^n}\left[f\left(L_{P_Z}(W), L_{Z^n}(W)\right)\right] - D(P_W \mid Z^n \mid\mid Q_W) - \log \beta_n\right] < 0$$

As a consequence

 $\mathbb{E}_{P_{W,Z^n}} \left[f \left(L_{P_Z}(W), L_{Z^n}(W) \right) \right] - D(P_{W \mid Z^n} \mid \mid Q_W \mid P_{Z^n}) - \log \beta_n \le 0$

Depending on the choice of $f(\cdot, \cdot)$, use Jensen's inequality.

Step 3: Jensen's inequality (instead of Chernoff)

$$\mathbb{E}_{P_{Z^n}}\left[\sup_{P_W \mid Z^n} \mathbb{E}_{P_W \mid Z^n}\left[f\left(L_{P_Z}(W), L_{Z^n}(W)\right)\right] - D(P_W \mid Z^n \mid\mid Q_W) - \log \beta_n\right] < 0$$

As a consequence

$$\mathbb{E}_{P_{W,Z^n}} \left[f \left(L_{P_Z}(W), L_{Z^n}(W) \right) \right] - D(P_{W \mid Z^n} \mid \mid Q_W \mid P_{Z^n}) - \log \beta_n \le 0$$

Depending on the choice of $f(\cdot, \cdot)$, use Jensen's inequality.

Choice of $f(\cdot, \cdot)$ in [Xu & Raginsky, NeurIPS, 2017]

$$f(L_{P_Z}(W), L_{Z^n}(W)) = \lambda(L_{P_Z}(W) - L_{Z^n}(W))$$

Then optimization performed on λ

Implication

- We can leverage PAC-Bayes results to obtain a variety of average bounds
- Example: linear bound (a la Catoni)

$$\mathbb{E}_{P_{W,Z^n}}[L_{P_Z}(W)] \le \frac{1}{1 - e^{-\beta}} \left(\beta \mathbb{E}_{P_{W,Z^n}}[L_{Z^n}(W)] + \frac{D(P_{W \mid Z^n} \mid\mid Q_W \mid P_{Z^n})}{n}\right)$$

• But actually more can be done that has no correspondence in the PAC-Bayes literature

Samplewise bounds

Mutual information bound [Xu & Raginskiy, NeurIPS, 2017]

$$\mathbb{E}_{P_{W,Z^n}}[L_{P_Z}(W)] \le \mathbb{E}_{P_{W,Z^n}}[L_{Z^n}(W)] + \sqrt{\frac{1}{2n}}I(W;Z^n)$$

Samplewise bounds

Mutual information bound [Xu & Raginskiy, NeurIPS, 2017]

$$\mathbb{E}_{P_{W,Z^n}}[L_{P_Z}(W)] \le \mathbb{E}_{P_{W,Z^n}}[L_{Z^n}(W)] + \sqrt{\frac{1}{2n}}I(W;Z^n)$$

Individual-sample mutual information bound [Bu, Zou, Veeravalli, JSAIT, 2020]

$$\mathbb{E}_{P_{W,Z^{n}}}[L_{P_{Z}}(W)] \leq \mathbb{E}_{P_{W,Z^{n}}}[L_{Z^{n}}(W)] + \underbrace{\frac{1}{n}\sum_{i=1}^{n}\sqrt{\frac{1}{2}I(W;Z_{i})}}_{\leq \sqrt{\frac{1}{2n}I(W;Z^{n})}}$$

Samplewise bounds

Mutual information bound [Xu & Raginskiy, NeurIPS, 2017]

$$\mathbb{E}_{P_{W,Z^n}}[L_{P_Z}(W)] \le \mathbb{E}_{P_{W,Z^n}}[L_{Z^n}(W)] + \sqrt{\frac{1}{2n}}I(W;Z^n)$$

Individual-sample mutual information bound [Bu, Zou, Veeravalli, JSAIT, 2020]

$$\mathbb{E}_{P_{W,Z^n}}[L_{P_Z}(W)] \le \mathbb{E}_{P_{W,Z^n}}[L_{Z^n}(W)] + \underbrace{\frac{1}{n} \sum_{i=1}^n \sqrt{\frac{1}{2}I(W;Z_i)}}_{\le \sqrt{\frac{1}{2n}I(W;Z^n)}}$$

It tightens the MI bound and extends its applicability

IT generalization bounds | Giuseppe Durisi

Replace

Step 1: Concentration bound

Prove for a suitably chosen convex function $f(\cdot, \cdot)$ that

$$\mathbb{E}_{P_{Z^n}}\left[e^{f\left(L_{P_Z}(w), L_{Z^n}(w)\right)}\right] \leq \beta_n$$

where β_n does not depend on w

Replace

Step 1: Concentration bound

Prove for a suitably chosen convex function $f(\cdot, \cdot)$ that

$$\mathbb{E}_{P_{Z^n}}\left[e^{f\left(L_{P_Z}(w), L_{Z^n}(w)\right)}\right] \leq \beta_n$$

where β_n does not depend on w

with

Step 1b: samplewise concentration bound

Prove for a suitably chosen convex function $f(\cdot, \cdot)$ that for all $i = 1, \ldots, n$

$$\mathbb{E}_{P_{Z_i}}\left[e^{f\left(L_{P_Z}(w),\ell(w;Z_i)\right)}\right] \leq \beta$$

where β does not depend on w and i

Concluding the proof

• Step 2 and 3 result in

 $\mathbb{E}_{P_{W,Z_{i}}}\left[f\left(L_{P_{Z}}(W), \ell(W; Z_{i})\right)\right] - D(P_{W \mid Z_{i}} \mid \mid Q_{W} \mid P_{Z_{i}}) - \log \beta \leq 0$

• Sum over *i* and use Jensen

Concluding the proof

• Step 2 and 3 result in

 $\mathbb{E}_{P_{W,Z_{i}}}\left[f\left(L_{P_{Z}}(W),\ell(W;Z_{i})\right)\right] - D(P_{W|Z_{i}} || Q_{W} | P_{Z_{i}}) - \log \beta \leq 0$

• Sum over *i* and use Jensen

Implication

- We can leverage PAC-Bayes results to obtain a variety of average, samplewise bounds
- On the contrary, PAC-Bayes samplewise bounds are generally vacuous [Harutyunyan, ITW, 2022]

Average bounds and conditional mutual information

Problem

- Average and PAC-Bayes bounds reviewed so far apply only to randomized prediction rules
- Easy to construct prediction rules with finite complexity in the PAC sense, but infinite $I(W; Z^n)$ or $D(P_{W \mid Z^n} \mid\mid Q_W)$

Conditional mutual information (CMI) bounds

[Steinke & Zakynthinou, COLT, 2020]

$$\mathbb{E}_{P_{W,Z^{n}}}[L_{P_{Z}}(W)] \leq \mathbb{E}_{P_{W,Z^{n}}}[L_{Z^{n}}(W)] + \sqrt{\frac{2}{n}}I(W; S^{n} | \mathbf{Z})$$
$$\mathbb{E}_{P_{W,Z^{n}}}[L_{P_{Z}}(W)] \leq 2\mathbb{E}_{P_{W,Z^{n}}}[L_{Z^{n}}(W)] + \frac{3}{n}I(W; S^{n} | \mathbf{Z})$$

Advantages

- $I(W; S^n | \mathbf{Z})$ always bounded
- bounds applicable to fixed (deterministic) prediction rule

The 3-step proof template still applies (and tightens the bound) Replace

Step 1: Concentration bound

Prove for a suitably chosen convex function $f(\cdot, \cdot)$ that

$$\mathbb{E}_{P_{Z^n}}\left[e^{f\left(L_{P_Z}(w),L_{Z^n}(w)\right)}\right] \leq \beta_n$$

where β_n does not depend on w

The 3-step proof template still applies (and tightens the bound) Replace

Step 1: Concentration bound

Prove for a suitably chosen convex function $f(\cdot, \cdot)$ that

$$\mathbb{E}_{P_{Z^n}}\left[e^{f\left(L_{P_Z}(w),L_{Z^n}(w)\right)}\right] \leq \beta_n$$

where β_n does not depend on w

with

Step 1c: Samplewise CMI concentration bound

Prove for a suitably chosen convex function $f(\cdot, \cdot)$ that for all $i = 1, \dots, n$

$$\mathbb{E}_{P_{S_i}}\left[e^{f\left(\ell\left(w; Z_{i, S_i}\right), \ell\left(w; Z_{i, S_i}\right)\right)\right)}\right] \leq \beta$$

where β does not depend on w and i and \mathbf{Z} ; then average w.r.t. $Q_{W|\mathbf{Z}}$

To conclude the proof

- Use Donsker-Varadhan to change the measure from $Q_{W\,|\,{f Z}}$ to $P_{W\,|\,{f Z},S_i}$ and apply Jensen
- Take expectation w.r.t to Z
- Nonsamplewise concentration bound + Chernoff \Rightarrow PAC-Bayes CMI bounds

Examples of more general CMI bounds

Disintegrated, samplewise CMI bounds [Haghifam et al., NeurIPS, 2020]

$$\mathbb{E}_{P_{W,Z^{n}}}[L_{P_{Z}}(W)] \leq \mathbb{E}_{P_{W,Z^{n}}}[L_{Z^{n}}(W)] + \mathbb{E}_{P_{\mathbf{Z}}}\left[\frac{1}{n}\sum_{i=1}^{n}\sqrt{2D(P_{W|\mathbf{Z},S_{i}}||Q_{W|\mathbf{Z}})}\right]$$

PAC-Bayes bounds for random subset setting [Hellström & Durisi, ICML-WS, 2021] With probability at least $1 - \delta$ with respect to $P_{\mathbf{Z},S^n}$,

$$\underbrace{\mathbb{E}_{P_{W}\mid\mathbf{Z},S^{n}}\left[L_{\mathbf{Z}(\bar{S}^{n})}\right]}_{\text{text error}} \leq \mathbb{E}_{P_{W}\mid\mathbf{Z},S^{n}}\left[L_{\mathbf{Z}(S^{n})}\right] + \sqrt{\frac{2}{n-1}\left(D(P_{W\mid\mathbf{Z},S^{n}}\mid\mid Q_{W\mid\mathbf{Z}}) + \log\frac{\sqrt{n}}{\delta}\right)}$$
$$\mathbb{E}_{P_{W\mid\mathbf{Z},S^{n}}}\left[L_{\mathbf{Z}(\bar{S}^{n})}\right] \leq 2\mathbb{E}_{P_{W\mid\mathbf{Z},S^{n}}}\left[L_{\mathbf{Z}(S^{n})}\right] + \frac{3D(P_{W\mid\mathbf{Z},S^{n}}\mid\mid Q_{W\mid\mathbf{Z}}) + \log(1/\delta)}{n}$$

It gives automatically data-dependent prior; recovers state of the art bounds for randomized DNN

Numerical experiments for PAC-Bayes CMI bound LeNet-5

Convolutional layer, 20 units, 5×5 size, linear activation, 1×1 stride, valid padding Max pooling layer, 2×2 size, 2×2 stride Convolutional layer, 50 units, 5×5 size, linear activation, 1×1 stride, valid padding Max pooling layer, 2×2 size, 2×2 stride Flattening layer Fully connected layer, 500 units, ReLU activation Fully connected layer, 10 units, softmax activation

MNIST dataset

0	0	0	٥	0	Ô	0	0	D	٥	0	0	0	0	0	0
1	L	١	١	۱	1	1	1	1	1	١	1	1	۱	1	1
2	າ	2	2	ð	J	2	2	ደ	2	2	2	2	2	2	ン
З	3	3	3	3	3	3	З	3	3	З	З	3	3	3	З
4	4	٤	ч	4	4	Ч	ч	#	4	4	4	4	Ч	4	4
5	5	5	5	5	\$	5	5	5	5	5	5	5	5	5	5
6	G	6	6	6	6	6	6	Ь	6	4	6	6	6	6	b
¥	7	7	٦	7	7	ч	7	2	7	7	7	7	7	7	7
8	С	8	8	8	8	8	8	8	8	8	8	8	8	8	8
•	0	α	0	•	0	10	~	0	5	4	0	0	0	0	~

Choice of posterior and prior distributions

Posterior distribution $P_{W \mid \mathbf{Z}(S^n)}$

- Randomly generate S^n and determine $\mathbf{Z}(S^n)$
- Use SGD to find the weights μ_1 of the DNN
- Set posterior as $\mathcal{N}(\mu_1, \sigma_1^2 \mathbf{I})$, with σ_1^2 largest variance for which deterministic DNN has training error similar to stochastic DNN

Prior distribution $P_{W \mid \mathbf{Z}}$

- Evaluate (via Monte-Carlo) average μ₂ of the weight vectors of neural networks trained via SGD on Z(Sⁿ) averaged over Sⁿ
- Set prior as $\mathcal{N}(\mu_2, \sigma_2^2 \mathbf{I})$ with σ_2^2 chosen as before

Classification error for SGD with momentum (random DNN)

- Slow-rate: square-root bound
- Fast-rate: linear bound
- The bounds are not vacuous
- Significant loss in accuracy for low training error (similar to [Dziugaite et al., AISTAT, 2021])

Evaluated conditional mutual information (eCMI) bounds

- The generalization performance depends on W indirectly through $\ell(W;Z)$
- Seek bounds where the information-theory metrics in the complexity term depend on $\ell(W;Z)$ rather than W
- First bounds of this kind appeared in [Steinke & Zakynthinou, COLT, 2020] and [Harutyunyan et al., NeurIPS, 2021] (fCMI)

General eCMI average and PAC-Bayes bounds

A family of both average, and PAC-Bayes eCMI bounds obtained using the 3-step proof template [Hellström, Durisi, NeurIPS, 2022]

Example: square-root, sample-wise, eCMI bound

$$\mathbb{E}_{P_{W,Z^n}}[L_{P_Z}(W)] \leq \mathbb{E}_{P_{W,Z^n}}[L_{Z^n}(W)] + \frac{1}{n} \sum_{i=1}^n \sqrt{2I(\underbrace{\ell(W(\mathbf{Z}(S^n)); Z_{i1}), \ell(W(\mathbf{Z}(S^n)); Z_{i2})}_{\text{loss on train and test sample on ith row}}; S_i \mid \mathbf{Z}))}$$

- Can be computed for deterministic DNN
- Can be evaluated efficiently for the case of 0-1 loss
- It requires the numerical estimation of a mutual information between Bernoulli random variables
- Expressiveness: can be used to recover classical PAC bounds

Key modification in proof template

Step 1c as in CMI, but with a different final averaging

Prove for a suitably chosen convex function $f(\cdot, \cdot)$ that for all $i=1,\ldots,n$

$$\mathbb{E}_{P_{S_i}}\left[e^{f\left(\ell\left(w;Z_{i,S_i}\right),\ell\left(w;Z_{i,S_i}\right)\right)\right)}\right] \leq \beta$$

where β does not depend on w and i and \mathbf{Z} ; then average w.r.t. $P_{\ell(W;Z_{i1}),\ell(W;Z_{i2})|\mathbf{Z}|}$

Concluding the proof

- Donsker-Varadhan to change measure from $P_{\ell(W;Z_{i1}),\ell(W;Z_{i2})|\mathbf{Z}}$ to $P_{\ell(W;Z_{i1}),\ell(W;Z_{i2})|S_i,\mathbf{Z}}$
- Then Jensen as usual

(Randomized) DNN trained with SGLD

Numerical results, binarized version of MNIST

Deterministic DNN trained with SGD

Conclusions

Take home message

Information-theoretic bounds that are numerically tight for neural networks and expressive enough to recover classical PAC bounds

We have not explained generalization (yet)

- Can we obtain tight bounds that can be evaluated analytically rather than numerically?
- Can the bound provide principled guidelines for DNN design and algorithm improvements?