Seeking information-theoretic bounds that explain generalization

Giuseppe Durisi

Chalmers, Sweden

Information Theory and Tapas Workshop
Jan., 2023

Joint work with Fredrik Hellström

Generalization performance of deep neural networks

Input
layer

Hidden
layers

Output
layer

- State of the art in many fields

One of many mysteries
Why do DNN generalize despite being largely overparameterized?

A complex problem that can be tackled from many angles...

This talk

- Focus on information theoretic bounds
- Tutorial overview + recent results
- Numerically tight bounds but the question remains open

Supervised-learning setup

Supervised-learning setup

- $\ell(\cdot, \cdot)$: nonnegative loss function; $\ell(w(x), y) \triangleq \ell(w ; z)$
- $Z^{n}=\left[Z_{1}, \ldots, Z_{n}\right]$: i.i.d. $\sim P_{Z}$ training data
- $L_{Z^{n}}(w)=\frac{1}{n} \sum_{i=1}^{n} \ell\left(w ; Z_{i}\right)$: training loss; $L_{P_{Z}}(w)=\mathbb{E}_{P_{Z}}[\ell(w ; Z)]$: population loss

Supervised-learning setup

- $\ell(\cdot, \cdot)$: nonnegative loss function; $\ell(w(x), y) \triangleq \ell(w ; z)$
- $Z^{n}=\left[Z_{1}, \ldots, Z_{n}\right]$: i.i.d. $\sim P_{Z}$ training data
- $L_{Z^{n}}(w)=\frac{1}{n} \sum_{i=1}^{n} \ell\left(w ; Z_{i}\right)$: training loss; $L_{P_{Z}}(w)=\mathbb{E}_{P_{Z}}[\ell(w ; Z)]$: population loss

Generalization problem: Under which conditions is $L_{P_{Z}}(w)$ close to $L_{Z^{n}}(w)$?

Probably approximately correct (PAC) learnability

- \mathcal{W} : set of prediction rules (hypothesis class)
- $c(\mathcal{W})$: "complexity" of \mathcal{W}

PAC bound [Vapnik \& Chervonenkis, Valiant]

For all P_{Z}, with probability $1-\delta$ over the training set, we have that

$$
L_{P_{Z}}(w) \leq L_{Z^{n}}(w)+\underbrace{\sqrt{\frac{c(\mathcal{W})+\log 1 / \delta}{2 n}}}_{\text {penalty term }}
$$

uniformly over the $w \in \mathcal{W}$

Probably approximately correct (PAC) learnability

- \mathcal{W} : set of prediction rules (hypothesis class)
- $c(\mathcal{W})$: "complexity" of \mathcal{W}

PAC bound [Vapnik \& Chervonenkis, Valiant]

For all P_{Z}, with probability $1-\delta$ over the training set, we have that

$$
L_{P_{Z}}(w) \leq L_{Z^{n}}(w)+\underbrace{\sqrt{\frac{c(\mathcal{W})+\log 1 / \delta}{2 n}}}_{\text {penalty term }}
$$

uniformly over the $w \in \mathcal{W}$

A vacuous bound

- CIFAR-10, convolutional neural network with $c(\mathcal{W}) \approx 10^{7}$
- Classification using $0-1$ loss
- $n \approx 10^{4}$ suffices for good empirical performance but PAC bound is ≥ 1

Seeking nonvacuous bounds: the PAC-Bayes approach

PAC bounds for DNN

- Vacuous because the complexity term depends on the entire class \mathcal{W}
- Seek instead bounds with complexity term that depends on the prediction rule

Seeking nonvacuous bounds: the PAC-Bayes approach

PAC bounds for DNN

- Vacuous because the complexity term depends on the entire class \mathcal{W}
- Seek instead bounds with complexity term that depends on the prediction rule

PAC-Bayes approach

- Originally proposed in [McAllester, '98-'99 \& Shawe-Taylor \& Williamson, '98]
- Prediction rule modeled as Markov kernel (posterior) $P_{W \mid Z^{n}}$
- Prior Q_{W} is also available, used to embed a priori knowledge, or impose structure on prediction
- Objective: establish high-probability bounds on the average (over posterior) generalization gap

$$
\mathbb{E}_{P_{W \mid Z^{n}}}\left[L_{P_{Z}}(W)-L_{Z^{n}}(W)\right]
$$

- Available results scattered in many publication venues (outside IT)
- See [Alquier, arXiv 2021] for a recent primer on PAC-Bayes

Some PAC-Bayes bounds (bounded $\ell(\cdot, \cdot)$)

McAllester "square-root" bound [McAllester, 1999]

For a given Q_{W} the following bound holds with prob. $1-\delta$ w.r.t. $P_{Z^{n}}$

$$
\mathbb{E}_{P_{W \mid Z^{n}}}\left[L_{P_{Z}}(W)\right] \leq \mathbb{E}_{P_{W \mid Z^{n}}}\left[L_{Z^{n}}(W)\right]+\underbrace{\sqrt{\frac{1}{2(n-1)}\left[D\left(P_{W \mid Z^{n}} \| Q_{W}\right)+\log \frac{\sqrt{n}}{\delta}\right]}}_{\text {penalty term }}
$$

uniformly over all posterior distributions $P_{W \mid Z^{n}}$

Some PAC-Bayes bounds (bounded $\ell(\cdot, \cdot)$)

McAllester "square-root" bound [McAllester, 1999]

For a given Q_{W} the following bound holds with prob. $1-\delta$ w.r.t. $P_{Z^{n}}$

$$
\mathbb{E}_{P_{W \mid Z^{n}}}\left[L_{P_{Z}}(W)\right] \leq \mathbb{E}_{P_{W \mid Z^{n}}}\left[L_{Z^{n}}(W)\right]+\underbrace{\sqrt{\frac{1}{2(n-1)}\left[D\left(P_{W \mid Z^{n}} \| Q_{W}\right)+\log \frac{\sqrt{n}}{\delta}\right]}}_{\text {penalty term }}
$$

uniformly over all posterior distributions $P_{W \mid Z^{n}}$

Catoni "linear" bound [Catoni, 2007]
For a given Q_{W} and for a given $\beta>0$, the following bound holds with prob. $1-\delta$ w.r.t. $P_{Z^{n}}$

$$
\mathbb{E}_{P_{W \mid Z^{n}}}\left[L_{P_{Z}}(W)\right] \leq \frac{1}{1-e^{-\beta}}\left(\beta \mathbb{E}_{P_{W \mid Z^{n}}}\left[L_{Z^{n}}(W)\right]+\frac{D\left(P_{W \mid Z^{n}} \| Q_{W}\right)+\log (1 / \delta)}{n}\right)
$$

uniformly over all posterior distributions $P_{W \mid Z^{n}}$

A 3-step proof template [Rivasplata et al., NeurIPS, 2020]

Step 1: concentration bound

- Prove for a suitably chosen convex function $f(\cdot, \cdot)$ that

$$
\mathbb{E}_{P_{Z^{n}}}\left[e^{f\left(L_{P_{Z}}(w), L_{Z^{n}}(w)\right)}\right] \leq \beta_{n}
$$

where β_{n} does not depend on w

- Consequence:

$$
\mathbb{E}_{Q_{W}}\left[\mathbb{E}_{P_{Z^{n}}}\left[e^{f\left(L_{P_{Z}}(W), L_{Z^{n}}(W)\right)}\right]\right]=\mathbb{E}_{P_{Z^{n}}}\left[\mathbb{E}_{Q_{W}}\left[e^{f\left(L_{P_{Z}}(W), L_{Z^{n}}(W)\right)}\right]\right] \leq \beta_{n}
$$

A 3-step proof template

Step 2: change of measure via Donsker-Varadhan

$$
\log \mathbb{E}_{Q_{W}}\left[e^{f\left(L_{P_{Z}}(W), L_{Z^{n}}(W)\right)}\right]=\sup _{P_{W \mid Z^{n}}}\left\{\mathbb{E}_{P_{W \mid Z^{n}}}\left[f\left(L_{P_{Z}}(W), L_{Z^{n}}(W)\right)\right]-D\left(P_{W \mid Z^{n}} \| Q_{W}\right)\right\}
$$

Consequence: exponential inequality

$$
\mathbb{E}_{P_{Z^{n}}}\left[e^{\sup _{P_{W \mid Z^{n}}} \mathbb{E}_{P_{W \mid Z^{n}}}\left[f\left(L_{P_{Z}}(W), L_{Z^{n}}(W)\right)\right]-D\left(P_{W \mid Z^{n}} \| Q_{W}\right)-\log \beta_{n}}\right] \leq 1
$$

A 3-step proof template

Step 3: Chernoff bound

$$
P_{Z^{n}}\left[\sup _{P_{W \mid Z^{n}}} \mathbb{E}_{P_{W \mid Z^{n}}}\left[f\left(L_{P_{Z}}(W), L_{Z^{n}}(W)\right)\right]-D\left(P_{W \mid Z^{n}} \| Q_{W}\right)-\log \beta_{n}>\log \frac{1}{\delta}\right] \leq \delta
$$

A 3-step proof template

Step 3: Chernoff bound

$$
P_{Z^{n}}\left[\sup _{P_{W \mid Z^{n}}} \mathbb{E}_{P_{W \mid Z^{n}}}\left[f\left(L_{P_{Z}}(W), L_{Z^{n}}(W)\right)\right]-D\left(P_{W \mid Z^{n}} \| Q_{W}\right)-\log \beta_{n}>\log \frac{1}{\delta}\right] \leq \delta
$$

To conclude the proof

- Take complement
- Depending on the choice of $f(\cdot, \cdot)$, use Jensen's inequality

Examples of functions $f(\cdot, \cdot)$

McAllester "square-root" bound

$$
\left.\mathbb{E}_{P_{W \mid Z^{n}}}\left[L_{P_{Z}}(W)\right] \leq \mathbb{E}_{P_{W \mid Z^{n}}}\left[L_{Z^{n}}(W)\right]+\sqrt{\frac{1}{2(n-1)}\left[D\left(P_{W \mid Z^{n}} \| Q_{W}\right)+\log \frac{\sqrt{n}}{\delta}\right.}\right]
$$

Step 1: concentration bound

$$
\mathbb{E}_{P_{Z^{n}}}\left[e^{2 \frac{n-1}{n}\left(L_{P_{Z}}(w)-L_{Z^{n}}(w)\right)^{2}}\right] \leq n
$$

Catoni "linear" bound

$$
\mathbb{E}_{P_{W \mid Z^{n}}}\left[L_{P_{Z}}(W)\right] \leq \frac{1}{1-e^{-\beta}}\left(\beta \mathbb{E}_{P_{W \mid Z^{n}}}\left[L_{Z^{n}}(W)\right]+\frac{D\left(P_{W \mid Z^{n}} \| Q_{W}\right)+\log (1 / \delta)}{n}\right)
$$

Step 1: concentration bound

$$
\mathbb{E}_{Z^{n}}\left[e^{n d_{\gamma}\left(L_{P_{Z}}(w) \| L_{Z^{n}}(w)\right)}\right] \leq 1, \text { with } d_{\gamma}(p \| q)=\gamma p-\log \left(1-q+q e^{\gamma}\right)
$$

PAC-Bayes bounds and DNN

Catoni "linear" bound
For a given Q_{W} and for a given $\beta>0$, the following bound holds with prob. $1-\delta$ w.r.t. $P_{Z^{n}}$

$$
\mathbb{E}_{P_{W \mid Z^{n}}}\left[L_{P_{Z}}(W)\right] \leq \frac{1}{1-e^{-\beta}}\left(\beta \mathbb{E}_{P_{W \mid Z^{n}}}\left[L_{Z^{n}}(W)\right]+\frac{D\left(P_{W \mid Z^{n}} \| Q_{W}\right)+\log (1 / \delta)}{n}\right)
$$

uniformly over all posterior distributions $P_{W \mid Z^{n}}$

- PAC-Bayes bounds can be optimized to find a good posterior $P_{W \mid Z^{n}}$
- Applied in many fields to obtain numerical certificates for randomized prediction rules
- DNN: Naïve application of PAC-Bayes yields vacuous bounds
- Solution: data-dependent prior

Data-dependent prior

- Split training data as $Z^{n}=\left[\begin{array}{ll}Z_{\mathrm{p}}^{m}, & Z_{\mathrm{t}}^{n-m}\end{array}\right]$
- Let the prior depend on $Z_{\mathrm{p}}^{m} \Rightarrow$ data-dependent prior $Q_{W \mid Z_{\mathrm{p}}^{m}}$
- Use Z_{t}^{n-m} to evaluate the training error in the bound
- This approach yields some of the numerically tightest bounds known for randomized DNN

Catoni linear bound with data-dependent prior [Dziugaite et al., AISTATS, 2021]
For a given given $\beta>0$, the following bound holds with prob. $1-\delta$ w.r.t. $P_{Z^{n}}$

$$
\mathbb{E}_{P_{W \mid Z^{n}}}\left[L_{P_{Z}}(W)\right] \leq \frac{1}{1-e^{-\beta}}\left(\beta \mathbb{E}_{P_{W \mid Z^{n}}}\left[L_{Z_{\mathrm{t}}^{n-m}}(W)\right]+\frac{D\left(P_{W \mid Z^{n}} \| Q_{W \mid Z_{\mathrm{p}}^{m}}\right)+\log (1 / \delta)}{n-m}\right)
$$

Proof: just modify step-1 in our proof template

Step 1: concentration bound

- Prove for a suitably chosen convex function $f(\cdot, \cdot)$ that

$$
\mathbb{E}_{P_{Z_{\mathrm{t}}^{n-m}}}\left[e^{f\left(L_{P_{Z}}(w), L_{Z_{\mathrm{t}}^{n-m}}(w)\right)}\right] \leq \beta_{n-m}
$$

where β_{n-m} does not depend on w

- Consequence:

$$
\mathbb{E}_{Q_{W \mid Z_{\mathrm{p}}^{m} P_{Z_{\mathrm{P}}^{m}}}}\left[\mathbb{E}_{P_{Z_{\mathrm{t}}^{n-m}}}\left[e^{f\left(L_{P_{Z}}(W), L_{Z^{n}}(W)\right)}\right]\right]=\mathbb{E}_{P_{Z^{n}}}\left[\mathbb{E}_{Q_{W \mid Z_{\mathrm{P}}^{m}}}\left[e^{f\left(L_{P_{Z}}(W), L_{Z^{n}}(W)\right)}\right]\right] \leq \beta_{n}
$$

Concluding the proof

Donsker-Varadhan to change measure from $Q_{W \mid Z_{\mathrm{p}}^{m}}$ to $P_{W \mid Z^{n}}$ and the proceed as before

Generalization bounds in the information-theory literature

- [T. Zhang, IT, 2006]: exponential inequalities, optimization of posterior distribution
- [Xu \& Raginsky, NeurIPS, 2017]: average (rather than high-probability) generalization bound

$$
\mathbb{E}_{P_{W, Z^{n}}}\left[L_{P_{Z}}(W)\right] \leq \mathbb{E}_{P_{W, Z^{n}}}\left[L_{Z^{n}}(W)\right]+\sqrt{\frac{1}{2 n} I\left(W ; Z^{n}\right)}
$$

- Observation: $I\left(W ; Z^{n}\right)=D\left(P_{W \mid Z^{n}} \| P_{W} \mid P_{Z^{n}}\right) \leq D\left(P_{W \mid Z^{n}} \| Q_{W} \mid P_{Z^{n}}\right)$
- P_{W} : oracle prior

Almost identical 3-step proof template

Step 1: Concentration of measure (unchanged)

- Prove for a suitably chosen convex function $f(\cdot, \cdot)$ that

$$
\mathbb{E}_{P_{Z^{n}}}\left[e^{f\left(L_{P_{Z}}(w), L_{Z^{n}}(w)\right)}\right] \leq \beta_{n}
$$

where β_{n} does not depend on w

- Consequence:

$$
\mathbb{E}_{Q_{W}}\left[\mathbb{E}_{P_{Z^{n}}}\left[e^{f\left(L_{P_{Z}}(W), L_{Z^{n}}(W)\right)}\right]\right]=\mathbb{E}_{P_{Z^{n}}}\left[\mathbb{E}_{Q_{W}}\left[e^{f\left(L_{P_{Z}}(W), L_{Z^{n}}(W)\right)}\right]\right] \leq \beta_{n}
$$

An almost identical 3 -step proof template

Step 2: change of measure via Donsker-Varadhan (unchanged)

$$
\log \mathbb{E}_{Q_{W}}\left[e^{f\left(L_{P_{Z}}(W), L_{Z^{n}}(W)\right)}\right]=\sup _{P_{W \mid Z^{n}}} \mathbb{E}_{P_{W \mid Z^{n}}}\left[f\left(L_{P_{Z}}(W), L_{Z^{n}}(W)\right)\right]-D\left(P_{W \mid Z^{n}} \| Q_{W}\right)
$$

Consequence: exponential inequality

$$
\mathbb{E}_{P_{Z^{n}}}\left[e^{\sup _{P_{W} \mid Z^{n}} \mathbb{E}_{P_{W \mid Z^{n}}}\left[f\left(L_{P_{Z}}(W), L_{Z^{n}}(W)\right)\right]-D\left(P_{W \mid Z^{n}} \| Q_{W}\right)-\log \beta_{n}}\right] \leq 1
$$

An almost identical 3 -step proof template

Step 3: Jensen's inequality (instead of Chernoff)

$$
e^{\mathbb{E}_{P_{Z^{n}}}\left[\sup _{P_{W} \mid Z^{n}} \mathbb{E}_{P_{W} \mid Z^{n}}\left[f\left(L_{P_{Z}}(W), L_{Z^{n}}(W)\right)\right]-D\left(P_{W \mid Z^{n}} \| Q_{W}\right)-\log \beta_{n}\right]} \leq 1
$$

An almost identical 3-step proof template

Step 3: Jensen's inequality (instead of Chernoff)

$$
e^{\mathbb{E}_{P_{Z^{n}}}\left[\sup _{P_{W} \mid Z^{n}} \mathbb{E}_{P_{W} \mid Z^{n}}\left[f\left(L_{P_{Z}}(W), L_{Z^{n}}(W)\right)\right]-D\left(P_{W \mid Z^{n}} \| Q_{W}\right)-\log \beta_{n}\right]} \leq 1
$$

As a consequence

$$
\mathbb{E}_{P_{W, Z^{n}}}\left[f\left(L_{P_{Z}}(W), L_{Z^{n}}(W)\right)\right]-D\left(P_{W \mid Z^{n}} \| Q_{W} \mid P_{Z^{n}}\right)-\log \beta_{n} \leq 0
$$

Depending on the choice of $f(\cdot, \cdot)$, use Jensen's inequality.

An almost identical 3-step proof template

Step 3: Jensen's inequality (instead of Chernoff)

$$
e^{\mathbb{E}_{P_{Z^{n}}}\left[\sup _{P_{W} \mid Z^{n}} \mathbb{E}_{P_{W} \mid Z^{n}}\left[f\left(L_{P_{Z}}(W), L_{Z^{n}}(W)\right)\right]-D\left(P_{W \mid Z^{n}} \| Q_{W}\right)-\log \beta_{n}\right]} \leq 1
$$

As a consequence

$$
\mathbb{E}_{P_{W, Z^{n}}}\left[f\left(L_{P_{Z}}(W), L_{Z^{n}}(W)\right)\right]-D\left(P_{W \mid Z^{n}} \| Q_{W} \mid P_{Z^{n}}\right)-\log \beta_{n} \leq 0
$$

Depending on the choice of $f(\cdot, \cdot)$, use Jensen's inequality.

Choice of $f(\cdot, \cdot)$ in [Xu \& Raginsky, NeurlPS, 2017]

$$
f\left(L_{P_{Z}}(W), L_{Z^{n}}(W)\right)=\lambda\left(L_{P_{Z}}(W)-L_{Z^{n}}(W)\right)
$$

Then optimization performed on λ

Implication

- We can leverage PAC-Bayes results to obtain a variety of average bounds
- Example: linear bound (a la Catoni)

$$
\mathbb{E}_{P_{W, Z^{n}}}\left[L_{P_{Z}}(W)\right] \leq \frac{1}{1-e^{-\beta}}\left(\beta \mathbb{E}_{P_{W, Z^{n}}}\left[L_{Z^{n}}(W)\right]+\frac{D\left(P_{W \mid Z^{n}} \| Q_{W} \mid P_{Z^{n}}\right)}{n}\right)
$$

- But actually more can be done that has no correspondence in the PAC-Bayes literature

Samplewise bounds

Mutual information bound [Xu \& Raginskiy, NeurlPS, 2017]

$$
\mathbb{E}_{P_{W, Z^{n}}}\left[L_{P_{Z}}(W)\right] \leq \mathbb{E}_{P_{W, Z^{n}}}\left[L_{Z^{n}}(W)\right]+\sqrt{\frac{1}{2 n} I\left(W ; Z^{n}\right)}
$$

Samplewise bounds

Mutual information bound [Xu \& Raginskiy, NeurIPS, 2017]

$$
\mathbb{E}_{P_{W, Z^{n}}}\left[L_{P_{Z}}(W)\right] \leq \mathbb{E}_{P_{W, Z^{n}}}\left[L_{Z^{n}}(W)\right]+\sqrt{\frac{1}{2 n} I\left(W ; Z^{n}\right)}
$$

Individual-sample mutual information bound [Bu, Zou, Veeravalli, JSAIT, 2020]

$$
\mathbb{E}_{P_{W, Z^{n}}}\left[L_{P_{Z}}(W)\right] \leq \mathbb{E}_{P_{W, Z^{n}}}\left[L_{Z^{n}}(W)\right]+\underbrace{\frac{1}{n} \sum_{i=1}^{n} \sqrt{\frac{1}{2} I\left(W ; Z_{i}\right)}}_{\leq \sqrt{\frac{1}{2 n} I\left(W ; Z^{n}\right)}}
$$

Samplewise bounds

Mutual information bound [Xu \& Raginskiy, NeurlPS, 2017]

$$
\mathbb{E}_{P_{W, Z^{n}}}\left[L_{P_{Z}}(W)\right] \leq \mathbb{E}_{P_{W, Z^{n}}}\left[L_{Z^{n}}(W)\right]+\sqrt{\frac{1}{2 n} I\left(W ; Z^{n}\right)}
$$

Individual-sample mutual information bound [Bu, Zou, Veeravalli, JSAIT, 2020]

$$
\mathbb{E}_{P_{W, Z^{n}}}\left[L_{P_{Z}}(W)\right] \leq \mathbb{E}_{P_{W, Z^{n}}}\left[L_{Z^{n}}(W)\right]+\underbrace{\frac{1}{n} \sum_{i=1}^{n} \sqrt{\frac{1}{2} I\left(W ; Z_{i}\right)}}_{\leq \sqrt{\frac{1}{2 n} I\left(W ; Z^{n}\right)}}
$$

It tightens the MI bound and extends its applicability

The 3-step proof template still applies

Replace

Step 1: Concentration bound

Prove for a suitably chosen convex function $f(\cdot, \cdot)$ that

$$
\mathbb{E}_{P_{Z^{n}}}\left[e^{f\left(L_{P_{Z}}(w), L_{Z^{n}}(w)\right)}\right] \leq \beta_{n}
$$

where β_{n} does not depend on w

The 3 -step proof template still applies

Replace

Step 1: Concentration bound

Prove for a suitably chosen convex function $f(\cdot, \cdot)$ that

$$
\mathbb{E}_{P_{Z^{n}}}\left[e^{f\left(L_{P_{Z}}(w), L_{Z^{n}}(w)\right)}\right] \leq \beta_{n}
$$

where β_{n} does not depend on w
with

Step 1b: samplewise concentration bound

Prove for a suitably chosen convex function $f(\cdot, \cdot)$ that for all $i=1, \ldots, n$

$$
\mathbb{E}_{P_{Z_{i}}}\left[e^{f\left(L_{P_{Z}}(w), \ell\left(w ; Z_{i}\right)\right)}\right] \leq \beta
$$

where β does not depend on w and i

The 3-step proof template still applies

Concluding the proof

- Step 2 and 3 result in

$$
\mathbb{E}_{P_{W, Z_{i}}}\left[f\left(L_{P_{Z}}(W), \ell\left(W ; Z_{i}\right)\right)\right]-D\left(P_{W \mid Z_{i}} \| Q_{W} \mid P_{Z_{i}}\right)-\log \beta \leq 0
$$

- Sum over i and use Jensen

The 3-step proof template still applies

Concluding the proof

- Step 2 and 3 result in

$$
\mathbb{E}_{P_{W, Z_{i}}}\left[f\left(L_{P_{Z}}(W), \ell\left(W ; Z_{i}\right)\right)\right]-D\left(P_{W \mid Z_{i}} \| Q_{W} \mid P_{Z_{i}}\right)-\log \beta \leq 0
$$

- Sum over i and use Jensen

Implication

- We can leverage PAC-Bayes results to obtain a variety of average, samplewise bounds
- On the contrary, PAC-Bayes samplewise bounds are generally vacuous [Harutyunyan, ITW, 2022]

Average bounds and conditional mutual information

Problem

- Average and PAC-Bayes bounds reviewed so far apply only to randomized prediction rules
- Easy to construct prediction rules with finite complexity in the PAC sense, but infinite $I\left(W ; Z^{n}\right)$ or $D\left(P_{W \mid Z^{n}} \| Q_{W}\right)$

The supersample approach [Steinke \& Zakynthinou, COLT, 2020]

Conditional mutual information (CMI) bounds

[Steinke \& Zakynthinou, COLT, 2020]

$$
\begin{aligned}
& \mathbb{E}_{P_{W, Z^{n}}}\left[L_{P_{Z}}(W)\right] \leq \mathbb{E}_{P_{W, Z^{n}}}\left[L_{Z^{n}}(W)\right]+\sqrt{\frac{2}{n} I\left(W ; S^{n} \mid \mathbf{Z}\right)} \\
& \mathbb{E}_{P_{W, Z^{n}}}\left[L_{P_{Z}}(W)\right] \leq 2 \mathbb{E}_{P_{W, Z^{n}}}\left[L_{Z^{n}}(W)\right]+\frac{3}{n} I\left(W ; S^{n} \mid \mathbf{Z}\right)
\end{aligned}
$$

Advantages

- $I\left(W ; S^{n} \mid \mathbf{Z}\right)$ always bounded
- bounds applicable to fixed (deterministic) prediction rule

The 3-step proof template still applies (and tightens the bound) Replace

Step 1: Concentration bound

Prove for a suitably chosen convex function $f(\cdot, \cdot)$ that

$$
\mathbb{E}_{P_{Z^{n}}}\left[e^{f\left(L_{P_{Z}}(w), L_{Z^{n}}(w)\right)}\right] \leq \beta_{n}
$$

where β_{n} does not depend on w

The 3-step proof template still applies (and tightens the bound) Replace

Step 1: Concentration bound

Prove for a suitably chosen convex function $f(\cdot, \cdot)$ that

$$
\mathbb{E}_{P_{Z^{n}}}\left[e^{f\left(L_{P_{Z}}(w), L_{Z^{n}}(w)\right)}\right] \leq \beta_{n}
$$

where β_{n} does not depend on w
with

Step 1c: Samplewise CMI concentration bound

Prove for a suitably chosen convex function $f(\cdot, \cdot)$ that for all $i=1, \ldots, n$

$$
\mathbb{E}_{P_{S_{i}}}\left[e^{f\left(\ell\left(w ; z_{i, \bar{S}_{i}}\right), \ell\left(w ; z_{i, S_{i}}\right)\right)}\right] \leq \beta
$$

where β does not depend on w and i and \mathbf{Z}; then average w.r.t. $Q_{W \mid \mathbf{Z}}$

To conclude the proof

- Use Donsker-Varadhan to change the measure from $Q_{W \mid \mathbf{Z}}$ to $P_{W \mid \mathbf{Z}, S_{i}}$ and apply Jensen
- Take expectation w.r.t to \mathbf{Z}
- Nonsamplewise concentration bound + Chernoff \Rightarrow PAC-Bayes CMI bounds

Examples of more general CMI bounds

Disintegrated, samplewise CMI bounds [Haghifam et al., NeurIPS, 2020]

$$
\mathbb{E}_{P_{W, Z^{n}}}\left[L_{P_{Z}}(W)\right] \leq \mathbb{E}_{P_{W, Z^{n}}}\left[L_{Z^{n}}(W)\right]+\mathbb{E}_{P_{\mathbf{Z}}}\left[\frac{1}{n} \sum_{i=1}^{n} \sqrt{2 D\left(P_{W \mid \mathbf{Z}, S_{i}} \| Q_{W \mid \mathbf{Z}}\right)}\right]
$$

PAC-Bayes bounds for random subset setting [Hellström \& Durisi, ICML-WS, 2021] With probability at least $1-\delta$ with respect to $P_{\mathbf{Z}, S^{n}}$,

$$
\begin{aligned}
& \underbrace{\mathbb{E}_{P_{W \mid \mathbf{Z}, S^{n}}}\left[L_{\mathbf{Z}\left(\bar{S}^{n}\right)}\right]}_{\text {text error }} \leq \mathbb{E}_{P_{W \mid \mathbf{Z}, S^{n}}}\left[L_{\mathbf{Z}\left(S^{n}\right)}\right]+\sqrt{\frac{2}{n-1}\left(D\left(P_{W \mid \mathbf{Z}, S^{n}} \| Q_{W \mid \mathbf{Z}}\right)+\log \frac{\sqrt{n}}{\delta}\right)} \\
& \mathbb{E}_{P_{W \mid \mathbf{Z}, S^{n}}}\left[L_{\mathbf{Z}\left(\bar{S}^{n}\right)}\right] \leq 2 \mathbb{E}_{P_{W \mid \mathbf{Z}, S^{n}}}\left[L_{\mathbf{Z}\left(S^{n}\right)}\right]+\frac{3 D\left(P_{W \mid \mathbf{Z}, S^{n}} \| Q_{W \mid \mathbf{Z}}\right)+\log (1 / \delta)}{n}
\end{aligned}
$$

It gives automatically data-dependent prior; recovers state of the art bounds for randomized DNN

Numerical experiments for PAC-Bayes CMI bound LeNet-5

Convolutional layer, 20 units, 5×5 size, linear activation, 1×1 stride, valid padding Max pooling layer, 2×2 size, 2×2 stride
Convolutional layer, 50 units, 5×5 size, linear activation, 1×1 stride, valid padding Max pooling layer, 2×2 size, 2×2 stride
Flattening layer
Fully connected layer, 500 units, ReLU activation
Fully connected layer, 10 units, softmax activation

MNIST dataset

0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6
7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7
8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8
9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9

Choice of posterior and prior distributions

Posterior distribution $P_{W \mid \mathbf{Z}\left(S^{n}\right)}$

- Randomly generate S^{n} and determine $\mathbf{Z}\left(S^{n}\right)$
- Use SGD to find the weights μ_{1} of the DNN
- Set posterior as $\mathcal{N}\left(\mu_{1}, \sigma_{1}^{2} \mathbf{I}\right)$, with σ_{1}^{2} largest variance for which deterministic DNN has training error similar to stochastic DNN

Prior distribution $P_{W \mid \mathbf{Z}}$

- Evaluate (via Monte-Carlo) average μ_{2} of the weight vectors of neural networks trained via SGD on $\mathbf{Z}\left(S^{n}\right)$ averaged over S^{n}
- Set prior as $\mathcal{N}\left(\mu_{2}, \sigma_{2}^{2} \mathbf{I}\right)$ with σ_{2}^{2} chosen as before

Classification error for SGD with momentum (random DNN)

- Slow-rate: square-root bound
- Fast-rate: linear bound
- The bounds are not vacuous
- Significant loss in accuracy for low training error (similar to [Dziugaite et al., AISTAT, 2021])

Evaluated conditional mutual information (eCMI) bounds

- The generalization performance depends on W indirectly through $\ell(W ; Z)$
- Seek bounds where the information-theory metrics in the complexity term depend on $\ell(W ; Z)$ rather than W
- First bounds of this kind appeared in [Steinke \& Zakynthinou, COLT, 2020] and [Harutyunyan et al., NeurIPS, 2021] (fCMI)

General eCMI average and PAC-Bayes bounds

A family of both average, and PAC-Bayes eCMI bounds obtained using the 3-step proof template [Hellström, Durisi, NeurIPS, 2022]

Example: square-root, sample-wise, eCMI bound

$$
\mathbb{E}_{P_{W, Z^{n}}}\left[L_{P_{Z}}(W)\right] \leq \mathbb{E}_{P_{W, Z^{n}}}\left[L_{Z^{n}}(W)\right]+\frac{1}{n} \sum_{i=1}^{n} \sqrt{2 I(\underbrace{\ell\left(W\left(\mathbf{Z}\left(S^{n}\right)\right) ; Z_{i 1}\right), \ell\left(W\left(\mathbf{Z}\left(S^{n}\right)\right) ; Z_{i 2}\right)}_{\text {loss on train and test sample on } i \text { th row }} ; S_{i} \mid \mathbf{Z}))}
$$

- Can be computed for deterministic DNN
- Can be evaluated efficiently for the case of 0-1 loss
- It requires the numerical estimation of a mutual information between Bernoulli random variables
- Expressiveness: can be used to recover classical PAC bounds

Key modification in proof template

Step 1c as in CMI, but with a different final averaging
Prove for a suitably chosen convex function $f(\cdot, \cdot)$ that for all $i=1, \ldots, n$

$$
\mathbb{E}_{P_{S_{i}}}\left[e^{f\left(\ell\left(w ; Z_{i, \bar{S}_{i}}\right), \ell\left(w ; Z_{i, S_{i}}\right)\right)}\right] \leq \beta
$$

where β does not depend on w and i and \mathbf{Z}; then average w.r.t. $P_{\ell\left(W ; Z_{i 1}\right), \ell\left(W ; Z_{i 2}\right) \mid \mathbf{Z}}$

Concluding the proof

- Donsker-Varadhan to change measure from $P_{\ell\left(W ; Z_{i 1}\right), \ell\left(W ; Z_{i 2}\right) \mid \mathbf{z}}$ to $P_{\ell\left(W ; Z_{i 1}\right), \ell\left(W ; Z_{i 2}\right) \mid S_{i}, \mathbf{Z}}$
- Then Jensen as usual

Numerical results, binarized version of MNIST

Deterministic DNN trained with SGD

(Randomized) DNN trained with SGLD

Conclusions

Take home message

Information-theoretic bounds that are numerically tight for neural networks and expressive enough to recover classical PAC bounds

We have not explained generalization (yet)

- Can we obtain tight bounds that can be evaluated analytically rather than numerically?
- Can the bound provide principled guidelines for DNN design and algorithm improvements?

