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Generalization performance of deep neural networks

Output
layer

Input
layer

® State of the art in many fields

One of many mysteries

Why do DNN generalize despite being largely overparameterized?
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A complex problem that can be tackled from many angles. ..

This talk

[ Itsa ® Focus on information theoretic bounds

“\ Spear! . i
~— ® Tutorial overview + recent results
® Numerically tight bounds but the question

remains open

It’s
a Snake!

2
It'sa
Tree!

Himmelfarb J et al. Kidney International 2002; 62: 1524
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Supervised-learning setup

' . N

ini o opulation
training data Z" — 3 prediction rule w f == = = = 3 Ip p] 1
training loss Lzn (w) | oss Lp, (w) ,I
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Supervised-learning setup

________

1 . A

- - opulation
training data Z" — 3 prediction rule w f == = = = 3 Ip p;' D 1
training loss Lzn (w) | oss Lp, (w) ,I

® z=(z,y); z instance; y: label, w(z): prediction; example: z = &, y = bicycle, w(&%) = car
® ¢(-,-): nonnegative loss function; £(w(z),y) £ £(w; 2)
® 7" =1[21,...,Zy,): i.id. ~ Pz training data

® Lyn(w)= 13" ¢(w;Z;): training loss; Lp, (w) = Ep, [f(w; Z)]: population loss

n =1

IT generalization bounds | Giuseppe Durisi 4/35



Supervised-learning setup

________

1 . A

- - opulation
training data Z" — 3 prediction rule w f == = = = 3 Ip p;' D 1
training loss Lzn (w) | oss Lp, (w) ,I

® z=(z,y); z instance; y: label, w(z): prediction; example: z = &, y = bicycle, w(&%) = car
® ¢(-,-): nonnegative loss function; £(w(z),y) £ £(w; 2)
® 7" =1[21,...,Zy,): i.id. ~ Pz training data

® Lyn(w)=2L135"" l(w;Z;): training loss; Lp, (w) = Ep, [f(w; Z)]: population loss

n

Generalization problem: Under which conditions is Lp, (w) close to Lz» (w) ? J
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Probably approximately correct (PAC) learnability
® WW: set of prediction rules (hypothesis class)
® ¢(W): “complexity” of W
PAC bound [Vapnik & Chervonenkis, Valiant]
For all Pz, with probability 1 — § over the training set, we have that

c(W) +1log1/é

2n
N— —_—

penalty term

Lp, (w) < Lzn(w) +

uniformly over the w € W
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Probably approximately correct (PAC) learnability
® )WV: set of prediction rules (hypothesis class)
® ¢(W): “complexity” of W

PAC bound [Vapnik & Chervonenkis, Valiant]
For all Pz, with probability 1 — § over the training set, we have that

c(W) +1log1/é

2n
N— —_—

penalty term

Lp, (w) < Lzn(w) +

uniformly over the w € W

A vacuous bound

¢ CIFAR-10, convolutional neural network with c¢(W) ~ 107
® C(Classification using 0-1 loss

® n ~ 10* suffices for good empirical performance but PAC bound is > 1
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Seeking nonvacuous bounds: the PAC-Bayes approach
PAC bounds for DNN
® Vacuous because the complexity term depends on the entire class W

® Seek instead bounds with complexity term that depends on the prediction rule
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Seeking nonvacuous bounds: the PAC-Bayes approach
PAC bounds for DNN
® Vacuous because the complexity term depends on the entire class W

® Seek instead bounds with complexity term that depends on the prediction rule

PAC-Bayes approach
® Originally proposed in [McAllester, '98-'99 & Shawe-Taylor & Williamson, '98]
® Prediction rule modeled as Markov kernel (posterior) Py | 7=
® Prior Qw is also available, used to embed a priori knowledge, or impose structure on prediction

® Objective: establish high-probability bounds on the average (over posterior) generalization gap

IEPW | zn [LPZ (W) —Lzn (W)}

® Available results scattered in many publication venues (outside IT)

® See [Alquier, arXiv 2021] for a recent primer on PAC-Bayes
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Some PAC-Bayes bounds (bounded ¢(-,-))

McAllester “square-root” bound [McAllester, 1999]
For a given Qw the following bound holds with prob. 1 —§ w.r.t. Pz»

D(Pw | z» || Qw) + log ?]

Ery | 2 [Lps (W)] < By g [Lzn (W) + \/ D {

penalty term

uniformly over all posterior distributions Py | z»
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Some PAC-Bayes bounds (bounded ¢(-,-))

McAllester “square-root” bound [McAllester, 1999]
For a given Qw the following bound holds with prob. 1 — § w.r.t. Pzn

D(Pw | zn || Qw) + log ?]

EPw ) 2 [Lp,(W)] <Epy, | zn [Lzn(W)] + \/2(7711_1) |:

penalty term

uniformly over all posterior distributions Py | z»

)
Catoni “linear” bound [Catoni, 2007]
For a given Qw and for a given 3 > 0, the following bound holds with prob. 1 — 6 w.r.t. Pzn
Ery o L (V)] € == (BB g [Ln (9] + 20120 o) 408G/ )
uniformly over all posterior distributions Py | zn )
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A 3-step proof template [Rivasplata et al., NeurlPS, 2020]

Step 1: concentration bound

® Prove for a suitably chosen convex function f(-,-) that
]Epzn |:6f(LPZ(w)7LG(w)):| < /jn

where 3, does not depend on w

® Consequence:

Eqy, {Epzn {ef(LPZ(W)’LZ"(W))” =Ep,n [EQW {ef(LPZ(W)’LZ"(W))” < Bn
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A 3-step proof template

Step 2: change of measure via Donsker-Varadhan

logEq,, [ef(LpZ(W),LG(W))]: sup {Epy | o [/ (Ley (W), Lzn(W))] = D(Pw 20 | Qw) }

Py | zn

Consequence: exponential inequality

<1

E [esuppw o By gn [7(Epg (),Lzn (W) ] =D(Pw | 2n 1| Qu)-los ﬁn]
B
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A 3-step proof template

Step 3: Chernoff bound

PZTL

sup Epy, | 4o [f(Ley (W), Lzn(W))] — D(Pw | zn || Qw) — log B > log 1] <54

Py | zm 4
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A 3-step proof template

Step 3: Chernoff bound

PZTL

sup Epy, | 4o [f(Ley (W), Lzn(W))] — D(Pw | zn || Qw) — log B > log 1] <54

Py | zm 4

To conclude the proof
® Take complement

® Depending on the choice of f(-,-), use Jensen’s inequality
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Examples of functions f(-,-)

McAllester “square-root” bound

n

Eriy | o 1Ly (W)] < Ery g [Lzn (W)] + ¢ sy [P 20 11Gw) +10g 7

Step 1: concentration bound

n—1 2
Ep,. |:eQT(LpZ (w)=Lgn (w)) } <n

Catoni “linear” bound

Ern Ly ()] < 1=z (FBrig o [Lan (W)] +

D(Pyw | z» || Qw) + log(1/5))

n

Step 1: concentration bound

Ezn |:end-y(LPZ<’w)“LG (w))] < 1, with d+(p|lq) = vp — log(1 — ¢ + qe”)

H

A

~
w
o
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PAC-Bayes bounds and DNN

Catoni “linear” bound
For a given Qw and for a given 3 > 0, the following bound holds with prob. 1 — ¢ w.r.t. Pzn

D(Pw |z || Qw) + 10g(1/5))

o (BERw o lLan 7]+

Epy | zn[Lpz (W)] < 1_c 5

uniformly over all posterior distributions Py | zn

¢ PAC-Bayes bounds can be optimized to find a good posterior Py | zn
® Applied in many fields to obtain numerical certificates for randomized prediction rules
® DNN: Naive application of PAC-Bayes yields vacuous bounds

® Solution: data-dependent prior
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Data-dependent prior

® Split training data as Z" = [Z]", Z{"™ "]

® Let the prior depend on Z" = data-dependent prior Q| z

® Use Z'"™™ to evaluate the training error in the bound

® This approach yields some of the numerically tightest bounds known for randomized DNN

Catoni linear bound with data-dependent prior [Dziugaite et al., AISTATS, 2021]
For a given given B > 0, the following bound holds with prob. 1 — § w.r.t. Pzn

1

Epy | zn[Lp, (W)] < Fpp:} (ﬂEPW | [LZ:,47,(W)} +

D(Pw z» || Qw | zm) + 10g(1/5))

n—m
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Proof: just modify step-1 in our proof template

Step 1: concentration bound

® Prove for a suitably chosen convex function f(-,-) that

n—m
2y,

S anm

- [ef(LPZ )L <w>)}

where 3,,—,, does not depend on w

® Consequence:

flL (W),Lzn (W) _ fL (W),Lzn (W)
]EQVV\Z{)" PZ;” |:]EPZtnf'm |:€ ( % Z ):|:| - IEPZ'!L I:EQ\,)V‘ZI'T, |:€ ( Pz Z ):|:| S ﬂ

Concluding the proof

Donsker-Varadhan to change measure from QW‘ZSI to Py | z» and the proceed as before
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Generalization bounds in the information-theory literature

[T. Zhang, IT, 2006]: exponential inequalities, optimization of posterior distribution

[Xu & Raginsky, NeurlPS, 2017]: average (rather than high-probability) generalization bound

1
EPW,ZM [LPZ W) < Epwzzn [Lzn(W)] + %I(W§ Zn)

Observation: I(W; Z”) = D(PW | zn || Pw |Pzn) < D(PW|Z" H Qw | Pzn)

® Py : oracle prior
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Almost identical 3-step proof template

Step 1: Concentration of measure (unchanged)

® Prove for a suitably chosen convex function f(-,-) that
Ep {ef(LpZm),LG(w))] <8,
L =

where f3,, does not depend on w

® Consequence:

Eo,, {EPZ" {ef(LpZ<W>,LG(W))H —Ep, [EQW {ef(LpZ<W>,LG(W))H < 5,
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An almost identical 3-step proof template

Step 2: change of measure via Donsker-Varadhan (unchanged)

log Eq,, {ef(LPZ(W),LG(W))} = sup Epy | o [f(Ley (W), Lzn(W))] = D(Pw 20 || Qw)

PW\Z”

Consequence: exponential inequality

50 py, | g Bry | n |1 (Lo W)Lz (W) |=D(Pw | zn || Qu)-log B

Epzn |:6 § 1
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An almost identical 3-step proof template

Step 3: Jensen's inequality (instead of Chernoff)

JEPgn [90ry  gn oy | g [1 (L ).L2n (1) |=DCPw 20 11 Qw108 50] _ .
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An almost identical 3-step proof template

Step 3: Jensen's inequality (instead of Chernoff)

JFran [0 pyy | By | gn [ (Epp W).L2n ()] = D(Pw | 20 11 Qu) =108 51 | -
v
As a consequence
Epy, gn [f(LP, (W), Lzn(W))] — D(Pw | 20 || Qw | Pzn) — log 8 < 0
Depending on the choice of f(-,-), use Jensen's inequality. )
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An almost identical 3-step proof template

Step 3: Jensen's inequality (instead of Chernoff)

JEPgn [90ry  gn oy | g [1 (L ).L2n (1) |=DCPw 20 11 Qw108 50] _ .

As a consequence

Epy. zn [f(Lp; (W), Lzn (W))] = D(Pw | zn || Qw | Pzn) —log 8, <0

Depending on the choice of f(-,-), use Jensen's inequality.

Choice of f(-,-) in [Xu & Raginsky, NeurlPS, 2017]

F(Lpy (W), Lzn(W)) = A(Lp, (W) = Lzn(W))

Then optimization performed on A
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Implication

® We can leverage PAC-Bayes results to obtain a variety of average bounds

® Example: linear bound (a la Catoni)

1
EPW',Z” [LPZ (W)} < 1_e8 <6EPW’.Z“ [LZ" (W)] +

D(Pyw |z~ || Qw | Pzn)
n

® But actually more can be done that has no correspondence in the PAC-Bayes literature
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Samplewise bounds

Mutual information bound [Xu & Raginskiy, NeurlPS, 2017]

Eryg g [Loy (W)] < Ery g [Lzn(W)] + 4/ 5103 27)
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Samplewise bounds

Mutual information bound [Xu & Raginskiy, NeurlPS, 2017]

1
Epy,zn [Lry (W)] < Epy gn [Lzn (W)l +4/ 5 1(W; Z7)
J
Individual-sample mutual information bound [Bu, Zou, Veeravalli, JSAIT, 2020]
1<~ /1
Epyy, g [Lpy (W)] < Epyy g [Lzn (W)] + — > \/EI(W; Zi)
=il
<V I(W;2Z7)
J
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Samplewise bounds

Mutual information bound [Xu & Raginskiy, NeurlPS, 2017]

1
Epy,zn [Lry (W)] < Epy gn [Lzn (W)l +4/ 5 1(W; Z7)
.
Individual-sample mutual information bound [Bu, Zou, Veeravalli, JSAIT, 2020]
1 [1
Epy, zn [Lp,(W)] < Epy, zn [Lzn(W)] + ﬁ Z §I(W; Zi)
=il
<V I(W;2Z7)
.
It tightens the M| bound and extends its applicability }
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The 3-step proof template still applies

Replace

Step 1: Concentration bound

Prove for a suitably chosen convex function f(-,-) that

Ep,. F(Lr @) Lanw) | < g

where 3, does not depend on w
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The 3-step proof template still applies

Replace
Step 1: Concentration bound

Prove for a suitably chosen convex function f(-,-) that

Ep. . |ef (Lrz().Lznw) < B

AL

where 3, does not depend on w

with
Step 1b: samplewise concentration bound

Prove for a suitably chosen convex function f(-,-) that forall:=1,...,n
Ep, |ef (Frzrewz) | < g

where 3 does not depend on w and i
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The 3-step proof template still applies

Concluding the proof

® Step 2 and 3 result in

Epy, z, [f(Lr, (W), €(W; Z:))] = D(Pw |z, || Qw | Pz;) —log 8 < 0

® Sum over ¢ and use Jensen

IT generalization bounds | Giuseppe Durisi 22 /35



The 3-step proof template still applies

Concluding the proof

® Step 2 and 3 result in

Epy, z, [f(Lr, (W), €(W; Z:))] = D(Pw |z, || Qw | Pz;) —log 8 < 0

® Sum over ¢ and use Jensen

Implication

® We can leverage PAC-Bayes results to obtain a variety of average, samplewise bounds

® On the contrary, PAC-Bayes samplewise bounds are generally vacuous [Harutyunyan, ITW, 2022]
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Average bounds and conditional mutual information

Problem
® Average and PAC-Bayes bounds reviewed so far apply only to randomized prediction rules

® Easy to construct prediction rules with finite complexity in the PAC sense, but infinite I(WW; Z™)
or D(Pw |z~ || Qw)

The supersample approach [Steinke & Zakynthinou, COLT, 2020]

0 21 Znta Al
1 Zo  ZLpt2 Znt2| p n
0 Zn  Zon Ly
N . NE— ——
Sn VA Z(S™)
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Conditional mutual information (CMI) bounds

[Steinke & Zakynthinou, COLT, 2020]

Epy, zn Ly (W) < iy g [L2n (W)] + | 21(W; 57| 2)

Epy, gn [Lp; (W)] < 2Epy, yn [Lzn (W)] + %I(W; S™ | Z)

Advantages
® [(W;S™|Z) always bounded

® bounds applicable to fixed (deterministic) prediction rule
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The 3-step proof template still applies (and tightens the bound)

Replace

Step 1: Concentration bound

Prove for a suitably chosen convex function f(-,-) that

Es, . ef(LpZ(wazn(w))} < B,

where [, does not depend on w
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The 3-step proof template still applies (and tightens the bound)

Replace
Step 1: Concentration bound
Prove for a suitably chosen convex function f(-,-) that
Ep ef(LpZ(w»LG(w))} <5
zn = Mn
where [, does not depend on w )
with
Step 1c: Samplewise CMI concentration bound
Prove for a suitably chosen convex function f(-,-) that forall:=1,...,n
L\w;iZ; 5. )L 1Z4,8,
in, [ef( (wizs,) e sl>)] 5
where 3 does not depend on w and i and Z; then average w.r.t. Qw |z
v
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To conclude the proof
® Use Donsker-Varadhan to change the measure from Qw |z to Py |z, and apply Jensen
® Take expectation w.r.t to Z

® Nonsamplewise concentration bound + Chernoff = PAC-Bayes CMI bounds
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Examples of more general CMI bounds

Disintegrated, samplewise CMI bounds [Haghifam et al., NeurlPS, 2020]

Z\/QD (Pw 2.5, ||sz)}

IEPw,zn [LPZ (W)] < EPW,Z" [LZ"( + Ep,

PAC-Bayes bounds for random subset setting [Hellstrom & Durisi, ICML-WS, 2021]
With probability at least 1 — § with respect to Pz sn,

2 vn
]EPW | Z,sn [Lz(gn)] S ]EPW | Z,sn [LZ(S")] + \/’I’L 1 (D(PW | z,5m H QW | Z) -I— log T)
text error

3D(Pyw | z,sn || Qw | z) + log(1/0)
n

IE“1°vv\z,s" [LZ(S")] < 2]EPW|Z,S" [LZ(S”)] +

It gives automatically data-dependent prior; recovers state of the art bounds for randomized DNN
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Numerical experiments for PAC-Bayes CMI bound
LeNet-5

Convolutional layer, 20 units, 5 x 5 size, linear activation, 1 x 1 stride, valid padding
Max pooling layer, 2 X 2 size, 2 X 2 stride

Convolutional layer, 50 units, 5 X 5 size, linear activation, 1 x 1 stride, valid padding
Max pooling layer, 2 x 2 size, 2 x 2 stride

Flattening layer

Fully connected layer, 500 units, ReLU activation

Fully connected layer, 10 units, softmax activation

MNIST dataset

0000006027 000YL 000
LVAYN L2 020NN
2222232222222222%
3333333%3>3323333
Herqagdgsydd s Nyy
555855SS555s555¢55S
bGbbLEbLboE&sr 6660
T7797711790 122777
Y3 78832 ¥R P ST LAY D
999939394994 93499 9
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Choice of posterior and prior distributions

Posterior distribution Py | z(sn) Prior distribution P
W | Z

n H n
® Randomly generate S™ and determine Z(S™) ® Evaluate (via Monte-Carlo) average ps of the

weight vectors of neural networks trained via

® Use SGD to find the weights p1 of the DNN SGD on Z(S™) averaged over S™
n veraged over
® Set posterior as N (u1,051), with o7 largest . 2 . 5
variance for which deterministic DNN has ¢ ie: prior as N (uz, o31) with o3 chosen as
training error similar to stochastic DNN etore v
29 /35

Giuseppe Durisi
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Classification error for SGD with momentum (random DNN)

1y TTTT T T 1 T T T T T T T T T T TITTTT

—m— Slow-rate bound
—— Fast-rate bound
—o— Test loss

I
%

I
=N

<
"~

classification error

e
o

10° 107! 1072 1073 1074
target training error (deter. DNN)

IT generalization bounds | Giuseppe Durisi

Slow-rate: square-root bound
Fast-rate: linear bound
The bounds are not vacuous

Significant loss in accuracy for low training
error (similar to [Dziugaite et al., AISTAT,
2021))
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Evaluated conditional mutual information (eCMI) bounds

® The generalization performance depends on W indirectly through ¢(W; Z)

® Seek bounds where the information-theory metrics in the complexity term depend on {(W; Z)
rather than W

® First bounds of this kind appeared in [Steinke & Zakynthinou, COLT, 2020] and [Harutyunyan et
al., NeurlPS, 2021] (fCMI)
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General eCMI average and PAC-Bayes bounds

A family of both average, and PAC-Bayes eCMI bounds obtained using the 3-step proof template
[Hellstréom, Durisi, NeurlPS, 2022]

Example: square-root, sample-wise, eCMI bound

Epy zn [Lpy (W)] £ Epy, gn [Lzn(W)] + % Z QI(Z(W(Z(S")); Zi1), L(W(Z(S™)); Zi2); Si | Z))

loss on train and test sample on ith row

® Can be computed for deterministic DNN
® Can be evaluated efficiently for the case of 0-1 loss
® |t requires the numerical estimation of a mutual information between Bernoulli random variables

® Expressiveness: can be used to recover classical PAC bounds
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Key modification in proof template

Step 1c as in CMI, but with a different final averaging

Prove for a suitably chosen convex function f(-,-) thatforall: =1,...,n
f(Z wiZ; 5. )L\ w;Z; s, )
Epg, [e (wi7:5,) e(wiis,) ] <pB

where 3 does not depend on w and i and Z; then average w.r.t. Pyw,z,,),6(w;2,5) |2

Concluding the proof

® Donsker-Varadhan to change measure from Py .z,,),e(w;2,0) | 2 10 Pow;z:1),6(W:2:2) | Si,Z

® Then Jensen as usual

IT generalization bounds | Giuseppe Durisi 33/35



Numerical results, binarized version of MNIST

Deterministic DNN trained with SGD

0.25 —e— Test error
—¢— Square root
—— Binary KL
—— Interpolation

75 250 1000 4000
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(Randomized) DNN trained with SGLD

0.5

Test error
Square root
Binary KL
SGLD [11, Eq. (6)]

10

20
Epochs

30
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Conclusions

Take home message

Information-theoretic bounds that are numerically tight for neural networks and expressive enough to
recover classical PAC bounds y
We have not explained generalization (yet)

® Can we obtain tight bounds that can be evaluated analytically rather than numerically?

® Can the bound provide principled guidelines for DNN design and algorithm improvements? )
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