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Generalization performance of deep neural networks

Hidden
layers

Input
layer

Output
layer

• State of the art in many fields

One of many mysteries

Why do DNN generalize despite being largely overparameterized?
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A complex problem that can be tackled from many angles. . .

This talk

• Focus on information theoretic bounds

• Tutorial overview + recent results

• Numerically tight bounds but the question
remains open
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Supervised-learning setup

training data Zn prediction rule w
population
loss LPZ (w)

PZ (unknown)

training loss LZn(w)

• z = (x, y); x instance; y: label, w(x): prediction; example: x = , y = bicycle, w() = car

• ℓ(·, ·): nonnegative loss function; ℓ(w(x), y) ≜ ℓ(w; z)

• Zn = [Z1, . . . , Zn]: i.i.d. ∼ PZ training data

• LZn(w) = 1
n

∑n
i=1 ℓ(w;Zi): training loss; LPZ (w) = EPZ [ℓ(w;Z)]: population loss

Generalization problem: Under which conditions is LPZ (w) close to LZn(w) ?
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Probably approximately correct (PAC) learnability
• W: set of prediction rules (hypothesis class)

• c(W): “complexity” of W

PAC bound [Vapnik & Chervonenkis, Valiant]

For all PZ , with probability 1− δ over the training set, we have that

LPZ (w) ≤ LZn(w) +

√
c(W) + log 1/δ

2n︸ ︷︷ ︸
penalty term

uniformly over the w ∈ W

A vacuous bound

• CIFAR-10, convolutional neural network with c(W) ≈ 107

• Classification using 0–1 loss

• n ≈ 104 suffices for good empirical performance but PAC bound is ≥ 1
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Seeking nonvacuous bounds: the PAC-Bayes approach
PAC bounds for DNN

• Vacuous because the complexity term depends on the entire class W
• Seek instead bounds with complexity term that depends on the prediction rule

PAC-Bayes approach

• Originally proposed in [McAllester, ’98–’99 & Shawe-Taylor & Williamson, ’98]

• Prediction rule modeled as Markov kernel (posterior) PW |Zn

• Prior QW is also available, used to embed a priori knowledge, or impose structure on prediction

• Objective: establish high-probability bounds on the average (over posterior) generalization gap

EPW |Zn [LPZ (W )− LZn(W )]

• Available results scattered in many publication venues (outside IT)

• See [Alquier, arXiv 2021] for a recent primer on PAC-Bayes
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Some PAC-Bayes bounds (bounded ℓ(·, ·))
McAllester “square-root” bound [McAllester, 1999]

For a given QW the following bound holds with prob. 1− δ w.r.t. PZn

EPW |Zn [LPZ (W )] ≤ EPW |Zn [LZn(W )] +

√
1

2(n− 1)

[
D(PW |Zn ||QW ) + log

√
n

δ

]
︸ ︷︷ ︸

penalty term

uniformly over all posterior distributions PW |Zn

Catoni “linear” bound [Catoni, 2007]

For a given QW and for a given β > 0, the following bound holds with prob. 1− δ w.r.t. PZn

EPW |Zn [LPZ (W )] ≤ 1

1− e−β

(
β EPW |Zn [LZn(W )] +

D(PW |Zn ||QW ) + log(1/δ)

n

)
uniformly over all posterior distributions PW |Zn
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A 3-step proof template [Rivasplata et al., NeurIPS, 2020]

Step 1: concentration bound

• Prove for a suitably chosen convex function f(·, ·) that

EPZn

[
ef
(
LPZ

(w),LZn (w)
)]

≤ βn

where βn does not depend on w

• Consequence:

EQW

[
EPZn

[
ef
(
LPZ

(W ),LZn (W )
)]]

= EPZn

[
EQW

[
ef
(
LPZ

(W ),LZn (W )
)]]

≤ βn
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A 3-step proof template

Step 2: change of measure via Donsker-Varadhan

logEQW

[
ef
(
LPZ

(W ),LZn (W )
)]

= sup
PW |Zn

{
EPW |Zn

[
f
(
LPZ (W ), LZn(W )

)]
−D(PW |Zn ||QW )

}

Consequence: exponential inequality

EPZn

[
e
supPW |Zn EPW |Zn

[
f
(
LPZ

(W ),LZn (W )
)]

−D(PW |Zn ||QW )−log βn

]
≤ 1
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A 3-step proof template

Step 3: Chernoff bound

PZn

[
sup

PW |Zn

EPW |Zn

[
f
(
LPZ (W ), LZn(W )

)]
−D(PW |Zn ||QW )− log βn > log

1

δ

]
≤ δ

To conclude the proof

• Take complement

• Depending on the choice of f(·, ·), use Jensen’s inequality
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Examples of functions f(·, ·)
McAllester “square-root” bound

EPW |Zn [LPZ (W )] ≤ EPW |Zn [LZn(W )] +

√
1

2(n− 1)

[
D(PW |Zn ||QW ) + log

√
n

δ

]
Step 1: concentration bound

EPZn

[
e2

n−1
n

(
LPZ

(w)−LZn (w)
)2]

≤ n

Catoni “linear” bound

EPW |Zn [LPZ (W )] ≤ 1

1− e−β

(
β EPW |Zn [LZn(W )] +

D(PW |Zn ||QW ) + log(1/δ)

n

)
Step 1: concentration bound

EZn

[
endγ(LPZ

(w)∥LZn (w))
]
≤ 1, with dγ(p∥q) = γp− log(1− q + qeγ)
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PAC-Bayes bounds and DNN

Catoni “linear” bound

For a given QW and for a given β > 0, the following bound holds with prob. 1− δ w.r.t. PZn

EPW |Zn [LPZ (W )] ≤ 1

1− e−β

(
β EPW |Zn [LZn(W )] +

D(PW |Zn ||QW ) + log(1/δ)

n

)
uniformly over all posterior distributions PW |Zn

• PAC-Bayes bounds can be optimized to find a good posterior PW |Zn

• Applied in many fields to obtain numerical certificates for randomized prediction rules

• DNN: Näıve application of PAC-Bayes yields vacuous bounds

• Solution: data-dependent prior
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Data-dependent prior

• Split training data as Zn = [Zm
p , Zn−m

t ]

• Let the prior depend on Zm
p ⇒ data-dependent prior QW |Zm

p

• Use Zn−m
t to evaluate the training error in the bound

• This approach yields some of the numerically tightest bounds known for randomized DNN

Catoni linear bound with data-dependent prior [Dziugaite et al., AISTATS, 2021]

For a given given β > 0, the following bound holds with prob. 1− δ w.r.t. PZn

EPW |Zn [LPZ (W )] ≤ 1

1− e−β

(
β EPW |Zn

[
L

Zn−m
t

(W )
]
+

D(PW |Zn ||QW |Zm
p
) + log(1/δ)

n−m

)
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Proof: just modify step-1 in our proof template

Step 1: concentration bound

• Prove for a suitably chosen convex function f(·, ·) that

EP
Z

n−m
t

[
e
f
(
LPZ

(w),L
Z

n−m
t

(w)
)]

≤ βn−m

where βn−m does not depend on w

• Consequence:

EQW |Zm
p

PZm
p

[
EP

Z
n−m
t

[
ef
(
LPZ

(W ),LZn (W )
)]]

= EPZn

[
EQW |Zm

p

[
ef
(
LPZ

(W ),LZn (W )
)]]

≤ βn

Concluding the proof

Donsker-Varadhan to change measure from QW |Zm
p

to PW |Zn and the proceed as before
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Generalization bounds in the information-theory literature

• [T. Zhang, IT, 2006]: exponential inequalities, optimization of posterior distribution

• [Xu & Raginsky, NeurIPS, 2017]: average (rather than high-probability) generalization bound

EPW,Zn [LPZ (W )] ≤ EPW,Zn [LZn(W )] +

√
1

2n
I(W ;Zn)

• Observation: I(W ;Zn) = D(PW |Zn ||PW |PZn) ≤ D(PW |Zn ||QW |PZn)

• PW : oracle prior
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Almost identical 3-step proof template

Step 1: Concentration of measure (unchanged)

• Prove for a suitably chosen convex function f(·, ·) that

EPZn

[
ef
(
LPZ

(w),LZn (w)
)]

≤ βn

where βn does not depend on w

• Consequence:

EQW

[
EPZn

[
ef
(
LPZ

(W ),LZn (W )
)]]

= EPZn

[
EQW

[
ef
(
LPZ

(W ),LZn (W )
)]]

≤ βn
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An almost identical 3-step proof template

Step 2: change of measure via Donsker-Varadhan (unchanged)

logEQW

[
ef
(
LPZ

(W ),LZn (W )
)]

= sup
PW |Zn

EPW |Zn

[
f
(
LPZ (W ), LZn(W )

)]
−D(PW |Zn ||QW )

Consequence: exponential inequality

EPZn

[
e
supPW |Zn EPW |Zn

[
f
(
LPZ

(W ),LZn (W )
)]

−D(PW |Zn ||QW )−log βn

]
≤ 1
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An almost identical 3-step proof template

Step 3: Jensen’s inequality (instead of Chernoff)

e
EPZn

[
supPW |Zn EPW |Zn

[
f
(
LPZ

(W ),LZn (W )
)]

−D(PW |Zn ||QW )−log βn

]
≤ 1

As a consequence

EPW,Zn

[
f
(
LPZ (W ), LZn(W )

)]
−D(PW |Zn ||QW |PZn)− log βn ≤ 0

Depending on the choice of f(·, ·), use Jensen’s inequality.

Choice of f(·, ·) in [Xu & Raginsky, NeurIPS, 2017]

f
(
LPZ (W ), LZn(W )

)
= λ

(
LPZ (W )− LZn(W )

)
Then optimization performed on λ
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Implication

• We can leverage PAC-Bayes results to obtain a variety of average bounds

• Example: linear bound (a la Catoni)

EPW,Zn [LPZ (W )] ≤ 1

1− e−β

(
β EPW,Zn [LZn(W )] +

D(PW |Zn ||QW |PZn)

n

)

• But actually more can be done that has no correspondence in the PAC-Bayes literature
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Samplewise bounds

Mutual information bound [Xu & Raginskiy, NeurIPS, 2017]

EPW,Zn [LPZ (W )] ≤ EPW,Zn [LZn(W )] +

√
1

2n
I(W ;Zn)

Individual-sample mutual information bound [Bu, Zou, Veeravalli, JSAIT, 2020]

EPW,Zn [LPZ (W )] ≤ EPW,Zn [LZn(W )] +
1

n

n∑
i=1

√
1

2
I(W ;Zi)︸ ︷︷ ︸

≤
√

1
2n

I(W ;Zn)

It tightens the MI bound and extends its applicability
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The 3-step proof template still applies
Replace

Step 1: Concentration bound

Prove for a suitably chosen convex function f(·, ·) that

EPZn

[
ef
(
LPZ

(w),LZn (w)
)]

≤ βn

where βn does not depend on w

with

Step 1b: samplewise concentration bound

Prove for a suitably chosen convex function f(·, ·) that for all i = 1, . . . , n

EPZi

[
ef
(
LPZ

(w),ℓ(w;Zi)
)]

≤ β

where β does not depend on w and i
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The 3-step proof template still applies

Concluding the proof

• Step 2 and 3 result in

EPW,Zi

[
f
(
LPZ (W ), ℓ(W ;Zi)

)]
−D(PW |Zi

||QW |PZi)− log β ≤ 0

• Sum over i and use Jensen

Implication

• We can leverage PAC-Bayes results to obtain a variety of average, samplewise bounds

• On the contrary, PAC-Bayes samplewise bounds are generally vacuous [Harutyunyan, ITW, 2022]
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Average bounds and conditional mutual information

Problem

• Average and PAC-Bayes bounds reviewed so far apply only to randomized prediction rules

• Easy to construct prediction rules with finite complexity in the PAC sense, but infinite I(W ;Zn)
or D(PW |Zn ||QW )

The supersample approach [Steinke & Zakynthinou, COLT, 2020]
0
1
...
0


︸︷︷︸
Sn

=⇒


Z1 Zn+1

Z2 Zn+2

...
...

Zn Z2n


︸ ︷︷ ︸

Z

=⇒


Z1

Zn+2

...
Zn


︸ ︷︷ ︸

Z(Sn)

PW |Z(Sn)−−−−−−−→ W
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Conditional mutual information (CMI) bounds

[Steinke & Zakynthinou, COLT, 2020]

EPW,Zn [LPZ (W )] ≤ EPW,Zn [LZn(W )] +

√
2

n
I(W ;Sn |Z)

EPW,Zn [LPZ (W )] ≤ 2EPW,Zn [LZn(W )] +
3

n
I(W ;Sn |Z)

Advantages

• I(W ;Sn |Z) always bounded
• bounds applicable to fixed (deterministic) prediction rule
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The 3-step proof template still applies (and tightens the bound)
Replace

Step 1: Concentration bound

Prove for a suitably chosen convex function f(·, ·) that

EPZn

[
ef
(
LPZ

(w),LZn (w)
)]

≤ βn

where βn does not depend on w

with

Step 1c: Samplewise CMI concentration bound

Prove for a suitably chosen convex function f(·, ·) that for all i = 1, . . . , n

EPSi

[
e
f

(
ℓ
(
w;Zi,S̄i

)
,ℓ
(
w;Zi,Si

))]
≤ β

where β does not depend on w and i and Z; then average w.r.t. QW |Z
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To conclude the proof

• Use Donsker-Varadhan to change the measure from QW |Z to PW |Z,Si
and apply Jensen

• Take expectation w.r.t to Z

• Nonsamplewise concentration bound + Chernoff ⇒ PAC-Bayes CMI bounds
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Examples of more general CMI bounds

Disintegrated, samplewise CMI bounds [Haghifam et al., NeurIPS, 2020]

EPW,Zn [LPZ (W )] ≤ EPW,Zn [LZn(W )] + EPZ

[
1

n

n∑
i=1

√
2D(PW |Z,Si

||QW |Z)

]

PAC-Bayes bounds for random subset setting [Hellström & Durisi, ICML-WS, 2021]

With probability at least 1− δ with respect to PZ,Sn ,

EPW |Z,Sn

[
LZ(S̄n)

]︸ ︷︷ ︸
text error

≤ EPW |Z,Sn

[
LZ(Sn)

]
+

√
2

n− 1

(
D(PW |Z,Sn ||QW |Z) + log

√
n

δ

)

EPW |Z,Sn

[
LZ(S̄n)

]
≤ 2EPW |Z,Sn

[
LZ(Sn)

]
+

3D(PW |Z,Sn ||QW |Z) + log(1/δ)

n

It gives automatically data-dependent prior; recovers state of the art bounds for randomized DNN
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Numerical experiments for PAC-Bayes CMI bound
LeNet-5

Convolutional layer, 20 units, 5× 5 size, linear activation, 1× 1 stride, valid padding
Max pooling layer, 2× 2 size, 2× 2 stride
Convolutional layer, 50 units, 5× 5 size, linear activation, 1× 1 stride, valid padding
Max pooling layer, 2× 2 size, 2× 2 stride
Flattening layer
Fully connected layer, 500 units, ReLU activation
Fully connected layer, 10 units, softmax activation

MNIST dataset
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Choice of posterior and prior distributions

Posterior distribution PW |Z(Sn)

• Randomly generate Sn and determine Z(Sn)

• Use SGD to find the weights µ1 of the DNN

• Set posterior as N (µ1, σ
2
1I), with σ2

1 largest
variance for which deterministic DNN has
training error similar to stochastic DNN

Prior distribution PW |Z

• Evaluate (via Monte-Carlo) average µ2 of the
weight vectors of neural networks trained via
SGD on Z(Sn) averaged over Sn

• Set prior as N (µ2, σ
2
2I) with σ2

2 chosen as
before
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Classification error for SGD with momentum (random DNN)
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Test loss
• Slow-rate: square-root bound

• Fast-rate: linear bound

• The bounds are not vacuous

• Significant loss in accuracy for low training
error (similar to [Dziugaite et al., AISTAT,
2021])
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Evaluated conditional mutual information (eCMI) bounds

• The generalization performance depends on W indirectly through ℓ(W ;Z)

• Seek bounds where the information-theory metrics in the complexity term depend on ℓ(W ;Z)
rather than W

• First bounds of this kind appeared in [Steinke & Zakynthinou, COLT, 2020] and [Harutyunyan et
al., NeurIPS, 2021] (fCMI)
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General eCMI average and PAC-Bayes bounds

A family of both average, and PAC-Bayes eCMI bounds obtained using the 3-step proof template
[Hellström, Durisi, NeurIPS, 2022]

Example: square-root, sample-wise, eCMI bound

EPW,Zn [LPZ (W )] ≤ EPW,Zn [LZn(W )] +
1

n

n∑
i=1

√√√√2I
(
ℓ
(
W (Z(Sn));Zi1

)
, ℓ
(
W (Z(Sn));Zi2

)︸ ︷︷ ︸
loss on train and test sample on ith row

;Si |Z)
)

• Can be computed for deterministic DNN

• Can be evaluated efficiently for the case of 0-1 loss

• It requires the numerical estimation of a mutual information between Bernoulli random variables

• Expressiveness: can be used to recover classical PAC bounds
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Key modification in proof template

Step 1c as in CMI, but with a different final averaging

Prove for a suitably chosen convex function f(·, ·) that for all i = 1, . . . , n

EPSi

[
e
f

(
ℓ
(
w;Zi,S̄i

)
,ℓ
(
w;Zi,Si

))]
≤ β

where β does not depend on w and i and Z; then average w.r.t. Pℓ(W ;Zi1),ℓ(W ;Zi2) |Z

Concluding the proof

• Donsker-Varadhan to change measure from Pℓ(W ;Zi1),ℓ(W ;Zi2) |Z to Pℓ(W ;Zi1),ℓ(W ;Zi2) |Si,Z

• Then Jensen as usual
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Numerical results, binarized version of MNIST

Deterministic DNN trained with SGD
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(Randomized) DNN trained with SGLD
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SGLD [11, Eq. (6)]
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Conclusions

Take home message

Information-theoretic bounds that are numerically tight for neural networks and expressive enough to
recover classical PAC bounds

We have not explained generalization (yet)

• Can we obtain tight bounds that can be evaluated analytically rather than numerically?

• Can the bound provide principled guidelines for DNN design and algorithm improvements?
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